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Abstract The input data to grammar learning algorithms often consist of overt forms
that do not contain full structural descriptions. This lack of information may contribute
to the failure of learning. Past work on Optimality Theory introduced Robust Interpre-
tive Parsing (RIP) as a partial solution to this problem. We generalize RIP and suggest
replacing the winner candidate with a weighted mean violation of the potential winner
candidates. A Boltzmann distribution is introduced on the winner set, and the distribu-
tion’s parameter T is gradually decreased. Finally, we show that GRIP, the Generalized
Robust Interpretive Parsing Algorithm significantly improves the learning success rate
in a model with standard constraints for metrical stress assignment.

Keywords Boltzmann distribution · Learning algorithms · Metrical stress ·
Optimality theory · Overt forms · Robust interpretive parsing · Simulated annealing

1 The Problem: Overt form Contains Partial Information Only

Computational learning algorithms in linguistics build up the learner’s grammar based
on observed data. These data often contain, however, partial information only, hiding
crucial details, which may mislead the learner. The overt form uttered by the ‘teacher’,
the source of the learning data, is not the same as the surface form produced by the
teacher’s grammar.1

1 In this paper, we ignore speech errors and transmission noise, as further complicating factors.
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140 T. Biró

For instance, a learner exposed to the sentence John loves Mary may deduce both
an SVO and an OVS word order for English. If love is reciprocal, then knowledge of
the world and of the context cannot help determining whom the speaker intended as
the “lover”, and whom as the “lovee”. In a naive bootstrapping approach, in which the
learner relies on her initial hypothesis to parse this sentence, she will be eventually
reinforced by this piece of data in her erroneous hypothetical OVS grammar. Moving
to a different phenomenon, one may suggest that children are delayed in acquiring the
Principle B needed to resolve pronouns correctly because they are misled by sentences
such as he looks like him. 2 Without knowing that the speaker of the previous utterance
did not coindex the two pronouns, the learner may deduce that Principle B can be
violated. To also give a phonological example, consider a language with penultimate
stress: abracadábra. Is the learner to derive from this word that the target language
has word final trochaic feet (abraca[dábra]), or that the language has iambic feet with
extrametrical word final syllables (abra[cadáb]ra)?

Learning methods often require the full structural description of the learning data
(the surface forms), including crucial information, such as semantic relations, co-
indexation and parsing brackets. Yet, these do not appear in the overt forms, as uttered
by the speaker-teacher. In this paper, we suggest a method that reduces this problem,
at least to some extent, within the framework of Optimality Theory (OT) (Prince and
Smolensky 1993/2004; Smolensky and Legendre 2006).

The structure of the article is as follows. Section 2 introduces the basic notions
and formalism of Optimality Theory and its learnability to be used subsequently. It
terminates by illustrating the limitations of the traditional approach to the problem just
outlined, Robust Interpretive Parsing (Tesar and Smolensky 1998, 2000). Then, Sect. 3
gradually develops an alternative approach, which however also requires overcoming
some mathematical challenges. The train of thought is translated into an implementable
algorithm and pseudo-code in Sect. 4. The success of the novel method is demonstrated
by the experiments on the learnability of metrical stress assignment discussed in Sect. 5.
Finally, the conclusions are drawn in Sect. 6.

2 Learning in Optimality Theory

2.1 Formal Basics of OT

In Optimality Theory (OT), a grammar is a hierarchy H of n constraints Ci (with
n − 1 ≥ i ≥ 0). A hierarchy is a total order on the set of constraints Con. This total
order can be represented by assigning rank values to the constraints: Ci � C j if and
only if the rank of Ci is greater than the rank of C j . Later on, the term ‘hierarchy’
will be used to denote the total order, whereas the rank values (from which the total
order can be derived, assuming they are pairwise distinct) shall be called ‘grammar’

2 Chomsky’s Principle B prohibits the interpretation of this sentence as the two pronouns referring to the
same entity. For the delay in its acquisition, see among many others Chien and Wexler (1990) and Hendriks
and Spenader (2005/2006) and references therein. Note that they advance more elaborate explanations for
the delay in the acquisition of Principle B than we do in this simplistic example.
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Towards a Robuster Interpretive Parsing 141

for practical reasons. The two approaches are equivalent representations, but we shall
prefer learning algorithms that update rank values to those updating total orders.

Constraints are introduced in order to pick the optimal form corresponding to the
input, the underlying representation to be uttered by the speaker. Formally, the under-
lying form u is mapped to the set of candidates Gen(u) by the Generator function
Gen. Often, candidates are interchangeably called surface forms; for other authors,
a candidate is an (underlying form, surface form) pair, or may even contain further
components: a correspondence relation, intermediate representations, forms mirroring
stages of “derivation”, etc. The constraint Ci ∈ Con, the set of the constraints, is a
function on this set of candidates, taking non-negative (integer) values. 3

Let the hierarchy H be Cn−1 � Cn−2 � . . . C1 � C0. That is, let Cn−1 be the
highest ranked constraint and C0 be the lowest ranked one. Let the index of a constraint
be its position in the hierarchy counted from the bottom. More precisely, the index
of a constraint is the number of constraints in the hierarchy ranked lower than this
constraint. A constraint is mapped onto its index by the order isomorphism between
(Con, H) and (n,<) (where n = {0, 1, . . . , n − 1}). As long as it will not create
confusion, the lower index (in the typographic sense) i in the notation Ci will coincide
with the index (in the formal sense) of constraint Ci . 4

Subsequently, hierarchy H assigns a harmony H(c) to each candidate c ∈ Gen(u).
In Harmony Grammar (Smolensky and Legendre 2006), H(c) takes real values, but not
in Optimality Theory. The harmony in OT can most easily be represented as a vector
(Eisner 2000). 5 Namely, H(c) is identified with the violation profile of candidate c,
which is the row corresponding to c in a traditional OT tableau:

H(c) = (Cn−1(c), . . . , C1(c), C0(c)) (1)

Violation profile H(c) lives in vector space R
n . For practical reasons, we reverse the

notation of the vector components in R
n : a = (an−1, . . . , a1, a0). This vector space we

equip with lexicographic order ≺lex, with the well-known definition: a ≺lex b if and
only if there exists some 0 ≤ i ≤ n −1 such that the leftmost n −1− i elements of the
two vectors are equal (∀ j < n: j > i → a j = b j ), and ai < bi . Finally, we shall say

3 More generally, a constraint can have its range in any set with a well-founded order, and the only
assumption presently needed is that the range is a well-founded subset of the real numbers. Although most
constraints in linguistics assign a non-negative integer number of violation marks to the candidates, this is
not always the case. For instance, Hnuc is a non-real valued constraint in Prince and Smolensky’s Berber
example (1993/2004:20f): it takes its values on a sonority scale, which is a different well-ordered set. To
apply the learning algorithm developed in this paper, a non-real valued constraint must be composed with an
order isomorphism. Note that this operation does not influence the constraint’s behaviour in the OT model.
4 As just being introduced, the indices are between 0 and n − 1. A more general approach may associate
any numbers to the constraints, as we shall later see, and the indices will get their own life in the learning
algorithm. Similarly to the real-valued ranks in Stochastic OT (Boersma and Hayes 2001) and the learning
algorithms to be soon discussed, and similarly to the K-values in Simulated Annealing for OT (Bíró 2006),
the indices are also introduced as a measure of the constraint’s position in the hierarchy, but may subsequently
be detached from the hierarchy. For instance, future research might investigate what happens if the notion
of constraint ranks (which are updated during learning) is conflated with the notion of constraint indices
(used elsewhere in the learning algorithm to be introduced). Yet, currently we keep the two concepts apart.
5 Further representations of the harmony are discussed by Bíró (2006), Chapter 3.
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142 T. Biró

that candidate c1 (or, its violation profile) is more harmonic for grammar (hierarchy)
H than candidate c2 (or its violation profile), if and only if H(c1) ≺lex H(c2). Note the
direction of the relation, which is different from the notation used by many colleagues:
the intuition is that we aim at minimizing the number of violations.

The grammatical surface form corresponding to underlying form u is postulated to
be the candidate c∗ in Gen(u) with the most harmonic violation profile:

c∗ = arg opt
c∈Gen(u)

H(c) (2)

In other words, either H(c∗) ≺lex H(c) or H(c∗) = H(c) for all c ∈ Gen(u). 6

(In the rare case when more candidates share the same optimal profile, OT postulates
all of them to be equally grammatical.) The best candidate c∗ is subsequently uttered
by the speaker as an overt form o = overt(c∗). As we have seen in the introduction,
overt forms may contain much less information than candidates.

2.2 Error-Driven Online Learning Algorithms in OT

The classic task of learning in Optimality Theory consists of finding the correct hier-
archy of the known constraints: how must the components of the violation profiles
be permuted so that the observed forms have the most harmonic violation profiles?
What the learner knows (supposes) is that each observed overt form originates from
a surface form that is the most harmonic one in the candidate set generated by the
corresponding underlying form.

Online learning algorithms (Tesar 1995; Tesar and Smolensky 1998, 2000; Boersma
1997; Boersma and Hayes 2001; Magri 2011, 2012) compare the winner candidate w

produced by the target hierarchy Ht of the teacher to the loser candidate l produced
by the hierarchy Hl currently hypothesized by the learner. 7 If l differs from w, then
learning takes place: some constraints are promoted or demoted in the hierarchy.
If l 
= w, there must be at least one winner preferring constraint Cw such that Cw(w) <

Cw(l), which guarantees that w wins over l for grammar Ht ; and similarly, there must
also be at least one loser preferring constraint Cl such that Cl(l) < Cl(w), which
fact makes l win for Hl . The learner knows that in the target grammar Ht at least one
of the winner preferring constraints dominates all the loser preferring constraints (cf.
the Cancellation/Domination Lemma by Prince and Smolensky (1993/2004), Chapter
8), while this is not the case in the learner’s current Hl grammar.

Consequently, Hl is updated according to some update rules. OT online learning
algorithms differ in the details of these update rules, but their general form is the

6 The existence and uniqueness of such a profile is guaranteed by the well-foundedness of the range of the
constraints, as well as by the fact that the set of constraints is finite, and hence, also well ordered by the
hierarchy. For a full and formal discussion, see for instance Bíró (2006), Chapter 3.
7 Even though the offline learning algorithms—such as the Recursive Constraint Demotion, also introduced
by Tesar (1995), Tesar and Smolensky (1998, 2000), and variants thereof—similarly suffer of the lack-of-
information problem, we do not discuss them in this paper. We leave it an open question whether the
approach presented can be combined with iterative versions of offline learning algorithms.
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Towards a Robuster Interpretive Parsing 143

following: promote (some of, or all) the winner preferring constraints, and/or demote
(some of, or all) the loser preferring constraints.

We shall focus on learning algorithms entertaining real-valued ranks for each con-
straint. Before each time a candidate set is evaluated, the constraints are sorted by
these rank values: the higher the rank of a constraint, the higher it will be ranked in
the hierarchy. In turn, in these models the update rules specify the values to be added
to the ranks of the winner preferring constraints, and the values to be deducted from
the ranks of the loser preferring constraints. After a few learning steps, the ranks of
the winner preferring constraints are increased sufficiently and/or the ranks of the
loser preferring constraints are decreased sufficiently to obtain a new hierarchy with
permuted constraints.

Please note that a high number of further variations in the OT learning literature shall
not concern us. For instance, we shall suppose that learners come with a random initial
hierarchy, whereas other scholars argue for universal constraint subhierarchies or for
a general markedness � faithfulness initial bias (Tesar and Prince 2003). We shall not
ask either whether children inherit the constraints or develop them themselves, but we
simply suppose that they have them before they start permuting them].

2.3 Robust Interpretive Parsing à la Tesar and Smolensky

Tesar and Smolensky (1998, 2000) make a distinction between the surface forms and
the overt forms. The former are “candidate outputs of Gen” and contain “full structural
descriptions”. The most harmonic of them is the structure predicted to be grammatical
by the OT grammar. Conversely, an “overt structure [is] the part of a description
directly accessible to the learner”: what is actually pronounced and perceived.

Metrical stress, already mentioned in the introduction, and used as an example by
Tesar and Smolensky, illustrates the point: The surface form contains foot brackets,
which are actually part and parcel of the phonological theory of stress, and therefore
most constraints crucially refer to them. Yet, the foot structure is not audible. In produc-
tion, the mapping from the surface form (segmental material, stress and foot structure)
to the overt form (segmental material and stress)—that is, deleting the brackets, but
keeping the assigned stresses—is trivial. Less is so the mapping in interpretation:
A single overt form can correspond to a number of surface forms. These different sur-
face forms would lead the learner to different conclusions regarding the target grammar,
because different hierarchies may choose different surface forms with the same overt
form. Repeating the example from the introduction, the overt form abracadábra can
be used to argue both for a language with word final trochaic feet (abraca[dábra]), and
for a language with iambic feet and extrametrical word final syllables (abra[cadáb]ra).

In general, too, the learner is exposed to the overt form, and not to the surface
form. Yet, the constraints, and thus the Harmony function H(c) in Eq. (1), apply to
candidates (surface forms), and not to overt forms. Hence, in order to be able to employ
the above mentioned learning algorithms, she has to decide which surface form (and
which underlying form) to use as the winner candidate: a candidate, and not an overt
form, that will be compared to the loser candidate.
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144 T. Biró

In the case of stress assignment, at least the underlying form can be unquestionably
recovered from the overt form (delete stress, keep the segmental material). Contain-
ment (McCarthy and Prince 1993) also applies to the overt forms. So the single open
question regarding the identity of the winner candidate is the surface form. In other
domains, however, the learner may not know the underlying form either, that served
as the input to the production process. In this case, Gen can be viewed as mapping a
meta-input to a number of possible underlying forms combined with all corresponding
surface forms. Some of these combinations will match the perceived overt form, and
thus acquiring the underlying forms is also part of the learning task.

A typical problem is whether a particular variation has to be accounted for with
allomorphy (by referring to more underlying forms) or within phonology (by finding
an appropriate constraint ranking that maps the single underlying form to various sur-
face forms). Then, a possible approach (Boersma 2007; Apoussidou 2007, 2012) is
to map the semantic or morphemic representation onto a set of candidates, each of
which is a (meaning, underlying form, surface form) triplet. The overt form known to
the learner is now the combination of the meaning and the (audible part of the) surface
form. The underlying form remains covered. If the learner comes to the conclusion
that the different alternatives of the variation are best generated by a grammar in which
the optimal candidates share their underlying forms but have different surface forms,
then the learner chooses an account within phonology. If, however, the grammar at
the end of the learning process yields candidates with different underlying forms as
optimal, then the learner will have opted for an explanation with allomorphy. In the
multi-layered BiPhon model of Paul Boersma (Boersma 2006; Apoussidou 2007),
candidates are a chain of meaning (or context), morpheme, underlying form, surface
form, auditory form and articulatory form. The learner only receives an auditory form
(and, possibly also a meaning) as ‘overt form’; whereas a huge subset of the candidate
set (various possible values of the covert components) will share that specific auditory
form (and that specific meaning). The underlying and surfaces forms in the phonolog-
ical sense together play the role of the surface form from the OT perspective, whereas
the meaning/context turns into the underlying form in the technical sense.

In all these cases, the learner is only given partial information. How should the
learner pick a winner candidate? The solution proposed by Tesar and Smolensky
(1998:251f), called Robust Interpretive Parsing (RIP) and inspired by the conver-
gence of Expectation-Maximization algorithms, is to rely on the grammar Hl currently
hypothesized by the learner. Similarly to production in OT (‘production-directed pars-
ing’), RIP maps the input, now the overt form o, onto a set of candidates. Let us denote
this set by RipSet(o). From it, again similarly to production, RIP has Hl choose the
best element w. Subsequently, this supposedly winner candidate w is employed to
update Hl using the Constraint Demotion algorithm. The updated Hl is now expected
to assign a better structure w to o in the next cycle.

To summarize the RIP/EDCD (Robust Interpretive Parsing with Error Driven
Constraint Demotion) approach of Tesar and Smolensky:

– An overt form o (for instance, stress pattern ábabà) is presented to the learner.
– The underlying form u (e.g., ababa) is also given to the learner (e.g., from the

context), or it can be recovered from o.
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Towards a Robuster Interpretive Parsing 145

– The learner cannot know, however, the surface form w∗ actually produced by the
teacher’s grammar, the ‘real winner’.

– The learner uses the Gen-function to produce the set of candidates corresponding
to the underlying form u. The learner uses her current Hl to determine the best
element of candidate set Gen(u), which becomes the loser candidate l.

– The learner uses a Gen-like function (let us call it RipSet, the inverse map of the
function overt) to generate the set of candidates corresponding to the overt form o.
In our example: RipSet(ábabà) = overt−1(ábabà) = {[á]ba[bà], [ába][bà],
[á][babà]}. She then relies on her current Hl again to determine the best element
of this set, which becomes the (supposedly) winner candidate w.

– The learner proceeds with the comparison of the winner candidate w to the loser
candidate l, in order to update Hl according to the update rules. Constraint Ci

is a winner preferring constraint if Ci (w) < Ci (l), and it is a loser preferring
constraint if Ci (l) < Ci (w).

In other words,

w = arg opt
c∈RipSet(o)

Hl(c) (3)

l = arg opt
c∈Gen(u)

Hl(c) (4)

We concern ourselves only with the case in which the winner is different from the
loser (w 
= l), and so learning can take place. Then, the set RipSet(o) of candidates
corresponding to overt form o is a proper subset of the set Gen(u) of candidates
corresponding to underlying form u. If u can be unambiguously recovered from o,
then RipSet(o) ⊆ Gen(u). Moreover, it is a proper subset because if the two sets were
equal, then their optimal elements were the same. Note that l /∈ RipSet(o), otherwise
the optimal element of the superset would also be the optimal element of the subset,
and hence, the loser candidate would be equal to the winner candidate.

Observe that the teacher has uttered the observed o, because he has produced some
candidate w∗ ∈ RipSet(o). This candidate is also the most harmonic element of
Gen(u) for hierarchy Ht :

w∗ = arg opt
c∈Gen(u)

Ht (c) (5)

and hence, obviously,

w∗ = arg opt
c∈RipSet(o)

Ht (c) (6)

Despite the similarities of Eqs. (3) and (6), nothing guarantees that w = w∗.
Sometimes, such a mistake is not really a problem, but at other times it is. Indeed,
Tesar and Smolensky (2000:62–68) show three examples when RIP/EDCD gets stuck
or enters an infinite loop, and does not converge to the target grammar. Hierarchy Hl

makes the learner pick a w different from w∗, and this choice leads to an erroneous
update of Hl .
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146 T. Biró

Tableau (7) presents a simple case of this kind of failure. Imagine that the target
grammar of the teacher maps underlying form /u/ to candidate w∗ =[w1], using his
hierarchy Ht = (C3 � C2 � C1) (read the tableau right-to-left). Consequently, he
utters overt form [[o1]]. Yet, RipSet(o1) contains two candidates, since [w2] is also
uttered as [[o1]]. Now, suppose that the unlucky learner currently entertains hierarchy
Hl = (C1 � C2 � C3) (the tableau read left-to-right). The loser form that she
generates for underlying form /u/ is [l], corresponding to a different overt form ([[o2]]).
Can she learn from this error?

/u/ C1 C2 C3

[w1] [[o1]] 1 0 0
[w2] [[o1]] 0 1 1
[l] [[o2]] 0 1 0

(7)

Employing the Robust Interpretive Parsing suggested by Tesar and Smolensky, she
will first search for the best element of RipSet([[o1]]) = {[w1], [w2]} with respect
to her hierarchy Hl , and she will find [w2]. Depending on the details of the learn-
ing algorithm, she will demote the constraints preferring [l] to [w2], and possibly
also promote the constraints preferring [w2] to [l]. Yet, in the current case, [l] har-
monically bounds [w2] (Prince and Smolensky 1993/2004:210; Samek-Lodovici and
Prince 1999). Thus, there is no winner preferring constraint, whereas the single loser
preferring constraint C3 is already demoted to the bottom of the hierarchy. Hence, no
update is possible, and the learning algorithm will be stuck in this state. She will never
find out that the target grammar is C3 � C2 � C1.

The source of the problem is clear: the fatal mistake made by the learner when she
employs Hl to determine the winner candidate.

3 RIP Reconsidered

3.1 Learners, Don’t Trust Your Hypothesis!

Intuition says that the mistake may be that the RIP algorithm of Tesar and Smolensky
relies too early on the hypothesized grammar Hl . It is perfect to use Hl to generate the
loser, because the learning algorithm is exactly driven by errors made by the grammar
hypothesized. But relying on a hypothesized grammar even with regards to the piece
of learning data is a misconception with too serious consequences.

In fact, what the learner knows from observing overt form o is that l must be less
harmonic than some element of RipSet(o) for the target grammar. The update should
be a step towards that direction. Any guess regarding which element of RipSet(o) must
be made more harmonic than l is actually a source of potential errors.

Observe, however, that the element being picked from RipSet(o) does not really
matter; what matters is its violation profile. It is this violation profile that is compared
to the violation profile of l in order to determine which constraints are demoted, and
which are promoted. What if we did not compare a single winner’s violation profile
to the loser’s, but the “violation profile” of the entire set of potential winners?
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Towards a Robuster Interpretive Parsing 147

Therefore, we introduce the mean violation profile of RipSet(o), which will then
be compared to the violation profile of l:

Definition 1 The weighted mean violation of constraint Ci by a set S (with weights
P(c), for each c ∈ S) is:

Ci (S) :=
∑

c∈S

P(c) · Ci (c) (8)

where P is a measure on S normalized to the unity:
∑

c∈S P(c) = 1.

In turn, we re-define the selection process of the constraints, by replacing the winner
candidate with the set of all potential winners:

Definition 2 Let o be an observed overt form, and l be the corresponding loser
candidate. Then, with respect to o and l, constraint Ci is

– a winner preferring constraint if and only if Ci (RipSet(o)) < Ci (l).
– a loser preferring constraint if and only if Ci (l) < Ci (RipSet(o)).

Traditional RIP uses the same definition, but the set RipSet(o) is replaced by its
best element selected according to Eq. (3). Since the weights P are normed to 1 on
RipSet(o), it is the sign of the following expression that determines what the update
rules do with constraint Ci , given overt form o and loser candidate l:

∑

c∈RipSet(o)

P(c) · [
Ci (c) − Ci (l)

] =

⎧
⎪⎨

⎪⎩

< 0 if Ci is a winner preferring constraint.

0 if Ci is an even (neutral) constraint.

> 0 if Ci is a loser preferring constraint.

(9)

Subsequently, you can use your favorite update rule in any standard OT online
learning algorithm to promote the winner preferring constraints and demote the loser
preferring ones. 8

3.2 Distribution of the Weights: Learners, Don’t Trust Your Hypothesis Too Early!

The last open issue is how to distribute the weights P in Eq. (9). Recall Eq. (3): the
approach of Tesar and Smolensky is equivalent to

P(c) =
⎧
⎨

⎩
1 if c = arg opt

c′∈RipSet(o)

Hl(c′)

0 else
(10)

8 Traditional OT only requires that the range of the constraints (of each constraint, separately) be some well
ordered set. The current learning algorithm seems to impose the use of a subset of the real numbers. Yet,
observe that what we only need is the difference of Ci (c) and Ci (l). Therefore, one can also use constraints
that take their values in well-ordered affine spaces over the one dimensional vector space R. (For any two
elements p and q in this affine space, let p − q ≥ 0 if and only if p 
 q.) Exactly the same applies to the
other extension of OT seemingly requiring real-valued constraints, the SA-OT Algorithm (Bíró 2006).
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148 T. Biró

Only the optimal element of RipSet(o) is given non-zero weight. Yet, as we have just
seen, this method relies too much on the hypothesized Hl . Is there another solution?

Initially, we have no clue which element of RipSet(o) to prefer. Grammar Hl is
random (randomly chosen, or at least, at random “distance” from the target), and so
its preferences should not be taken into consideration. Fans of the Maximum Entropy
method will tell you that if you have no information at all, then the best you can do is
to give each option equal weight. So, one may wish to start learning with

P(c) = 1

| RipSet(o)| , for every c ∈ RipSet(o) (11)

where | RipSet(o)| is the cardinality of the set RipSet(o).
Hoping that the learning algorithm works well, we have more and more “reasons”

to trust the current Hl as the learning process advances. We would like to start with
weight distribution (11), and end up with (10). Let a parameter 1/T describe our
level of trust. So the goal is to have weights P interpolate between distributions (11)
and (10) as the parameter T varies. In order to do so, we look for inspiration at the
Boltzmann distribution, a parametrized family of probability distributions that has all
desired properties (e.g., Bar-Yam (1997), pp. 70–71).

Parameter T may be called ‘temperature’, and it will be gradually decreased—hence
the term simulated annealing—as our trust in Hl increases. One approach could be to
decrease T by a value after each piece of learning data, or simply have 1/T be equal
to the number of learning data processed so far. Another approach could be to have
T depend on the number of successes: have 1/T be equal to the number of learning
data that were correctly predicted (the loser coincided with the winner, and Hl was not
updated). The precise way T decreases is called the cooling schedule, and we shall
return to it in Sect. 3.4.

Suppose for a moment that Hl(c) were not a vector but a scalar, as it happens in
Harmony Grammar. Then, we introduce a Boltzmann distribution over RipSet(o):

P(c) = PB(c | T, Hl) = e−Hl (c)/T

Z(T )
(12)

where the normalization factor Z(T ) is called the partition function:

Z(T ) =
∑

c′∈RipSet(o)

e− Hl (c
′)

T (13)

The Boltzmann distribution yields Eq. (11) for infinitely large T (at the beginning
of the learning process), and Eq. (10) for infinitesimally small positive T (at the end
of the learning process). Although this is a well-known fact, let us check it again in
order to prepare ourselves for the next sections. There, we shall show how to extend
distribution (12) from scalars to vectors in a way that fits well with the OT spirit.

Let us first rewrite Eq. (12) in a less familiar form, which is usually avoided because
it makes computation much more costly, but which will serve very well our purposes:
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Towards a Robuster Interpretive Parsing 149

1

P(c)
=

∑

c′∈RipSet(o)

e
Hl (c)−Hl (c

′)
T (14)

First, observe that one of the addends of the sum is always equal to 1 (namely, the
c′ = c case), and all other addends are also positive; hence, P(c) is guaranteed to be
less than 1. Second, note that for large values of T (whenever T � |Hl(c) − Hl(c′)|
for all c′), the exponents will be close to zero. Consequently, the sum almost takes the
form of summing up, | RipSet(o)| times, 1. This case reproduces Eq. (11).

Finally, as T converges to +0, the exponents grow to +∞ or −∞, depending
on the sign of Hl(c) − Hl(c′). In the former case, the addend converges to +∞; in
the latter case, to 0. For the most harmonic element c∗ of RipSet(o) (with the least
H(c) value), all addends—but c′ = c∗—converge to zero, and hence, P(c∗) = 1.
For all other c 
= c∗, there will be at least one addend with a positive exponent (the
c′ = c∗case: Hl(c) − Hl(c∗) > 0), growing to +∞, yielding an infinitesimally small
P(c). Thus, the T → +0 limit corresponds to Eq. (10), where optimization means
the minimization of Hl .

To summarize, the weights in Eq. (9) should follow the Boltzmann distribution (14),
and T has to be diminished during the learning process. Thereby, we begin with
weights (11), and terminate the process with weights (10).

3.3 Boltzmann Distribution in OT: the Quotient of Two Vectors

Nonetheless, a “minor” problem still persists: how to calculate the Boltzmann distribu-
tion in Optimality Theory? In Harmony Grammar, Hl(c) is a real-valued function, and
Eq. (12) does not pose a problem. Applying it is, in fact, replacing the traditional view
with MaxEnt OT (Jäger 2003; Goldwater and Johnson 2003) in Robust Interpretive
Parsing. But what about OT, which uses the vector-valued H(c) function (1)? 9

The way to calculate exponentials of the form found in Eqs. (12)–(14) has been
developed in Bíró (2005, 2006). Here, we are presenting a slightly different way
of introducing the same idea: we first redefine the notion of quotient between two
scalars, and then trivially extend it to vectors. Since the result will be a scalar, all other
arithmetic operations required by the definition of the Boltzmann distribution become
straightforward. Note, however, that the divisor T needs also be a vector.

The quotient a
b of integers a and b > 0 is the greatest among the integers r such that

r · b ≤ a. For instance, 17/3 = 5 because 3 times 5 (and any smaller integer) is less
than 17, whereas 3 times 6 (and any greater integer) is more than 17. This definition
works for any—positive, zero, negative—a. If, however, b < 0, then the relations
must be reversed, but we shall not need that case.

The same definition also works for real numbers, and even for vectors in R
n . Natural

order between scalars is replaced with the lexicographic order between vectors, and
the definition relies on the scalar multiplication of vectors, hence the result is a scalar.

9 Bíró (2006) introduces two alternatives to the vector-valued approach: polynomials and ordinal numbers.
The following train of thought could be repeated with these latter representations of the OT Harmony
function, as well.
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The quotient of two vectors a and b is defined as the least upper bound of the real
numbers r such that rb is still less than a according to the lexicographic order:

Definition 3 Let b be a vector in the vector space R
n with the lexicographic order

≺lex. Then b is a positive vector, if and only if 0 ≺lex b holds: it is not the null vector,
and its leftmost non-zero component is positive.

Definition 4 Let a and b be vectors in the vector space R
n with the lexicographic

order ≺lex. Let b be a positive vector. Then, the quotient of the two vectors is:

a
b

:= sup{r ∈ R|rb ≺lex a} (15)

By convention, the least upper bound of the empty set is sup(∅) = −∞. Moreover,
sup(R) = +∞.

Note that a
b · b can be either less than, or equal to, or greater than a; it depends on

whether the supremum itself is member of the set, or not.
For instance, the null vector 0 divided by any positive vector yields 0. Namely, a

positive divisor multiplied by a positive r results in a positive vector, which is greater
than the dividend. If multiplied by r = 0, then the result is the null vector. But if
multiplied by any negative r , then the result is a vector lexicographically less than 0.
Hence, the quotient is the least upper bound of the negative real numbers, which is 0.

Now let us discuss the a 
= 0 case. At least one of the components in the vector
a = (an−1, an−2, . . . , a0) is therefore non-zero. The same applies to the positive vector
b = (bn−1, bn−2, . . . , b0). Suppose, moreover, that ai is the first non-zero component
of a; and, similarly, b j > 0 is the leftmost non-zero component of b. The value i will
be called the index of vector a, and j is the index of b:

Definition 5 Let a = (an−1, . . . , a1, a0) ∈ R
n . The index of a is k if and only if

(1) ak 
= 0, and (2) for all 0 ≤ j ≤ n − 1, if j > k then a j = 0.
Moreover, in this case, the index component of a is ak .

Compare this definition to the index notion introduced in Sect. 2. Subsequently, we
demonstrate the following

Theorem 1 Let a be a non-zero vector, with index i and index component ai . Let b be
a positive vector, with index j and index component b j . Then

a
b

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i < j

ai/b j if i = j

+∞ if i > j and ai > 0

−∞ if i > j and ai < 0

(16)

Proof If i < j , that is, if there are more zeros at the beginning of a than at the
beginning of b, then for any positive r, rb will be greater lexicographically than a,
and for any negative r, rb is less than a. The r = 0 case depends on the sign of ai ,
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but does not influence the least upper bound, which is thus 0. If, conversely, i > j
and there are more zeros at the beginning of b, we have two cases. If ai > 0, then for
any r, rb will be lexicographically less than a; hence, the set referred to in Eq. (15)
is R, its supremum being +∞. If, however, ai < 0, then a ≺lex rb, and the quotient
will be the least upper bound of the empty set, by convention −∞. Finally, if the two
vectors have the same number of initial zeros (i = j), then for any r < ai/b j , rb will
be less than a, and for any r > ai/b j , rb will be greater than a, by definition of the
lexicographic order. Thus, the supremum is exactly ai/b j . The vector ai/b j · b may
be greater than, equal to or less than a, but this case does not affect the least upper
bound. �

To sum up, the quotient of two vectors is determined by the leftmost non-zero
components of the two vectors, whereas the subsequent components do not influence
their quotient. This is a story similar to comparing two candidates in OT: If you
subtract one row from the other in a tableau (an operation called ‘mark cancellation’
by Prince and Smolensky (1993/2004)), then the only factor determining which of the
two candidates is more harmonic is the leftmost non-zero cell. That cell corresponds
to the fatal constraint. Exactly the difference of such two rows will concern us very
soon.

In Optimality Theory, H(c) is a vector in R
n by Eq. (1). If we introduce a positive

vector T in the same vector space, then Definition 4 helps make sense of a Boltzmann
distribution—that is, of Eqs. (12) and (13)—in the context of OT. By convention, let
[1] e+∞ = +∞, and [2] e−∞ = 0, given the asymptotic behaviour of the exponential
function. Yet, a problem arises whenever the partition function becomes 0 for T values
with too many initial zero components.

Therefore, we shall rather use Eq. (14), which we reproduce here:

1

P(c)
=

∑

c′∈RipSet(o)

e
Hl (c)−Hl (c

′)
T (17)

This equation makes it possible to calculate the weights P(c) for Eq. (9), after
having accepted two further conventions: [3] a sum containing +∞ as an addend is
equal to +∞, while [4] 1/ ± ∞ = 0.

The following rules can be employed to compute the addends in Eq. (17). Let k
be the index and t > 0 be the value of the index component of T . Consequently,
T = (0, 0, . . . , 0, t, Tk−1, . . . , T1, T0). Suppose we are just computing the addend
with c and c′: then, let us compare the two candidates in the usual OT way. The fatal
constraint is C f , the highest ranked constraint in the learner’s grammar Hl such that
d := C f (c) − C f (c′) 
= 0. Let f denote the index of C f in Hl . In other words,
f is the index, and d is the index component of the difference vector Hl(c) − Hl(c′).
If there is no fatal constraint, because the two candidates incur the same violations
(such as when c = c′), and the difference vector is the null vector, then we postu-
late d = 0. Referring to Theorem 1 and the first two conventions just introduced,
we obtain
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e
Hl (c)−Hl (c

′)
T =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if d = 0 or f < k

ed/t if f = k

+∞ if f > k and d > 0

0 if f > k and d < 0

(18)

These results will be employed in computing the addends in Eq. (17). Whenever an
addend is +∞, the whole sum is +∞, and P(c) = 0 by conventions [3] and [4]. The
c′ = c addend guarantees that the sum is never less than 1.

As a final note, observe that the quotient of two vectors, as we have just intro-
duced it, is not right-distributive: (Hl(c) − Hl(c′))/T is not necessarily equal to
Hl(c)/T − Hl(c′)/T , which possibly results in the uninterpretable ∞−∞. Therefore,
please remember that we strictly adhere to Eq. (17) as the definition of the Boltzmann
distribution: mark cancellation precedes any other operations, and so highly ranked
cancelled marks do not play a role.

3.4 Decreasing T Gradually (Simulated Annealing)

In the current subsection, we demonstrate that for very large T vectors, distribu-
tion (17)—calculated with the use of (18)—yields the case in Eq. (11), the distribution
aimed at at the beginning of the learning process. Similarly, very low positive T vectors
return the weights in Eq. (10), which we would like to use at the end of the learning
process. Subsequently, we are introducing a novel learning algorithm that starts with
a high T , and gradually diminishes it, similarly to simulated annealing (Metropolis
et al 1953; Kirkpatrick et al 1983; Černy 1985). 10

A ‘high T ’ refers to, first of all, a T vector with a high index k, and secondarily, with
a high index component t . A ‘low T ’ refers to a T with a low index. Diminishing T
refers to a cooling schedule, a series of vectors that decreases monotonically according
to the lexicographic order ≺lex.

Yet, before doing so, it turns useful to enlarge the vector space R
n to R

Kmax−Kmin+1.
The vectors H(c) of Eq. (1) and T are replaced with vectors from a vector space with
a higher dimension, such that additional components are added both to the left and to
the right of the previous vectors. Imagine we introduced new constraints, ranked to
the top and to the bottom of the hierarchy, that assign 0 (or any constant) violations
to all candidates. The leftmost constituent in this enlarged vector space will be said to
correspond to index Kmax > n − 1, and the rightmost constituent to index Kmin < 0.
The index of the original constraints are left unchanged: the index of constraint Ci

is i if and only if i constraints are ranked lower than Ci in hierarchy Hl , and so the
number of violations Ci (c) assigned by Ci to candidate c appears at position i in the
vector

10 Only loosely related to it, the current approach is different from the stochastic hill-climbing algorithm
adapted to Optimality Theory by Bíró (2005, 2006). Simulated annealing has been also used for computa-
tional linguistic problems, such as parsing (Sampson 1986) and lexical disambiguation (Cowie et al 1992).
It belongs to a larger family of heuristic optimization techniques (for a good overview, refer to Reeves
(1995)), which also includes the genetic algorithms, suggested for the learning of OT grammars (Turkel
1994; Pulleyblank and Turkel 2000) and Principles-and-Parameters grammars (Yang 2002).
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Hl(c) = (
hKmax , hKmax−1, . . . , hn, Cn−1(c), . . . , Ci (c), . . . , C0(c), h−1, . . . , hKmin

)

(19)

The vector Hl(c) − Hl(c′) in this enlarged vector space is a vector with non-zero
components only with indices corresponding to the original constraints of the grammar.
Yet, we shall have more flexibility in varying the value of T .

For instance, if the index k of T is chosen to be Kmax > n−1, then T is so high that k
is guaranteed to be greater than the index f of whichever fatal constraint. Therefore, the
first case in Eq. (18) applies to each addend in Eq. (17), and the Boltzmann distribution
becomes the uniform distribution in Eq. (11):

1

P(c)
=

∑

c′∈RipSet(o)

e
Hl (c)−Hl (c

′)
T =

∑

c′∈RipSet(o)

1 = | RipSet(o)| (20)

This is the distribution to be used when we do not trust yet the learner’s hypothesized
grammar. Thus, the learning process should start with a T whose index is Kmax (and
whose index component is tmax, as we shall soon see). Then, we gradually decrease
T : its index component, but also its index. The uniform distribution of P(c) remains
in use as long as the index of T does not reach the index of the highest possible
fatal constraint. This period will be called the first phase, in which each candidate
contributes equally to the constraint selection (9).

Subsequently, candidates that violate the highest possible fatal constraints more
than minimally will receive less weight: they have less influence on the decision about
which constraints to promote and which to demote. When the index k of T drops
below the index f of some fatal constraint, then some candidates will receive zero
weight. Imagine, namely, that c ∈ RipSet(o) loses to c∗ ∈ RipSet(o) at constraint C f ,
and f > k. Losing means that d = C f (c) − C f (c∗) > 0. Now, this is the third case
in Eq. (18), and thus the addend corresponding to c′ = c∗ in sum (17) will be infinite.
Hence, P(c) = 0 by conventions [3] and [4].

This second phase can be compared to the approach to variation by Coetzee (2004,
2006), which postulates that all candidates that have not been filtered out by the first
constraints—which have survived up until a ‘critical cut-off’ point—will emerge in
the language as less frequent variants of the most harmonic form. Our index k of
T corresponds to this critical cut-off: if candidate c loses to the best element(s) of
the set due to a fatal constraint that is ranked higher than this point, then it will not
emerge in Coetzee’s model, and it will have P(c) = 0 voting right about the promotion
and demotion of the constraints in our approach. Constraints with an index greater
than k are trusted to be ranked high in the learner’s grammar, and therefore violating
them more than minimally entails that the teacher could not have produced that form.
Yet, constraints below this critical point are not yet believed to be correctly ranked.
Therefore, if a candidate violates them more than minimally, it still keeps its rights.
Similarly in Coetzee’s model: if a candidate suboptimally violates a constraint below
the critical cut-off, it still may emerge in the language. In the simplest case, if no
constraint with index k actually acts as fatal constraint, then all candidates that emerge
in Coetzee’s model will receive equal weights in ours.
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Finally, when the index k of T drops below zero, there are two cases. If c is the
most harmonic element of RipSet(o) with respect to hierarchy Hl , then the fourth case
in Eq. (18) applies, with an exception: when c′ = c. Consequently, all addends are 0,
with the exception of a single addend that is 1. So in this case, P(c) = 1. 11

In the second case, if c is less harmonic than the most harmonic element c∗ of
RipSet(o), then the addend c′ = c∗ contributes +∞ to the sum. In turn, P(c) = 0.

Summing up, when the index of T drops below the index of the lowest ranked pos-
sible fatal constraint, the Boltzmann distribution turns into the Delta-distribution (10):

P(c) =
⎧
⎨

⎩
1 if c = arg opt

c′∈RipSet(o)

Hl(c′)

0 else
(21)

This situation at the end of the learning process will be referred to as the third
phase. The learner’s hierarchy is fully trusted, and a low T picks out a single winner
candidate’s profile to be compared to the loser candidate. In the third phase, the learning
turns into the traditional RIP of Tesar and Smolensky.

It is possible to start with a T that has all Kmax − Kmin + 1 components set to some
tmax > 0. Then, its leftmost component is gradually decreased to zero. When the
leftmost component has become zero, then we start decreasing the second component
from the left. And so forth, as long as its rightmost component has not reached zero.

Yet, observe that the components that follow the index component of T do not
play any role. It is sufficient to focus on the index k and the index component t of
T . In practice, the learning algorithm will be encircled with two, embedded loops.
The outer one decreases variable k, corresponding to the index of T , from Kmax to
Kmin, using steps of Kstep = 1. The inner loop decreases variable t from tmax to,
but not including tmin = 0, by steps of tstep. Parameter setting (k, t) can be seen as
T = (0(Kmax), . . . , 0(k+1), t(k), 0(k−1), . . . , 0(Kmin)).

Although RipSet(o) does not change during learning, the Boltzmann distribution
over this set must be recalculated each time either T (that is, k or t), or Hl changes.
This can be a very CPU consuming task, as people using Boltzmann machines for
other domains can tell.

3.5 How to Improve RIP Further?

As we shall see it in Sect. 5, simulated annealing helps to some significant degree
to overcome the pitfalls of the traditional RIP. Yet, there is still room for further
generalizations and improvements.

The constraint selection rules (9) distinguish between winner preferring constraints
and loser preferring constraints. This distinction is subsequently the crux of any learn-
ing algorithm, and one source of its eventual failure. Yet, rules (9) are extremely daring,

11 If RipSet(o) has more than one, equally harmonic optima (with the same violation profile), then these
optima uniformly distribute the unit weight among themselves. Still, from the point of view of the learning
algorithm and Eq. (9), this special situation corresponds to assigning weight 1 to the single most harmonic
violation profile, even if shared by more candidates.
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since a slight change in the distribution P may already turn constraints from loser pre-
ferring into winner preferring, or vice versa. One may, therefore, prefer keeping a
wider margin between the two groups of constraints:

∑

c∈RipSet(o)

P(c) · [
Ci (c) − Ci (l)

] =
{

< −β if Ci is winner preferring.

> λ if Ci is loser preferring.
(22)

for some non-negative β and λ values. Using this refined set of rules, a margin of β +λ

is introduced, and thus, less constraints will be identified as winner preferring or loser
preferring, and more as practically even (neutral). Depending on the update rule in the
learning algorithm, such a conservative cautiousness may increase the success rate.
Section 5.6 discusses the influence of introducing positive β and λ parameters. 12

Giorgio Magri has suggested to replace Ci (c)−Ci (l) with its sign (+1, 0 or −1) in
Eq. (22), since mainstream Optimality Theory is only concerned with the comparison
of Ci (c) to Ci (l), and not their actual difference. Even though such a move would give
up the original idea of comparing the loser candidate to the weighted mean violation
profile of the potentially winner candidates, as derived in Sect. 3.1, it is nevertheless
true that Magri’s suggestion makes it easier to implement the algorithm in a system
that “does not count”.

A second way of improving the learning algorithm concerns our remark on
Eq. (11): we argued that initially the learners have no reason for preferring any element
of RipSet(o) over the other, and hence, they should entertain a uniform distribution
P over RipSet(o) in the first phase of the learning. However, it is not exactly true
that the learners have no information at all at this stage. In fact, they know that some
candidates are eternal losers: they are harmonically bounded (Samek-Lodovici and
Prince 1999) by another candidate or by a set of candidates, and therefore, they could
not have been produced by the teacher.

Consequently, an improved version of the learning algorithms should remove these
eternal losers from RipSet(o), or assign them a zero weight P . Yet, it is computationally
expensive to check every element w of RipSet(o) whether it is harmonically bounded
by a subset of Gen(u) (or, at least, by a subset of RipSet(o)\{w}), and therefore we do
not report any result on this direction of possible improvement. Note that for the same
reason did Paul Boersma and Diana Apoussidou add the feature “remove harmonically
bounded candidates” to Praat in 2003, which decreased—but not to zero—the number
of learning failures (Boersma, p.c.).

Pursuing this train of thought further, a computationally even more expensive sug-
gestion arises. Namely, the learner may use an a priori probability distribution P(c)
informed by the chances of the learner having a hierarchy producing c. For instance,
the experiments in Sect. 5 assign the teacher (and the learner) a random hierarchy,

12 An anonymous reviewer remarks that “according to the original definition of winner/loser preferring
constraints, most constraints usually end up as even, because the loser and the winner usually do not differ
too much. Thus, re-ranking moves around only few constraints, as no update rule re-ranks even constraints.
But once individual constraint differences are replaced with their convex combination (9), the number of
even constraints may drop drastically, as it is easy for the convex combination to be non-null. Thus, the
refinement in Eq. (22) can be interpreted as a strategy to keep the number of even constraints large.”
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every permutations of the constraints having the same chance. Thus, the learner may
start with an initial probability distribution that assigns any candidate c a weight P(c)
that is proportional to the number of hierarchies yielding c as the winner. Clearly, an
exact computation of these weights is computationally unfeasible if the number of
constraints and the number of candidates are greater than “unrealistically small”. And
yet, especially in a connectionist implementation, a Monte Carlo simulation might
turn to be very helpful.

Although the Boltzmann distribution is popular nowadays and successfully used
in several disciplines, it is certainly not the only parametrized family of probability
distributions that can serve our purposes. Moreover, even though its proposed extension
to a function taking its values in an ordered vector space may square with the “OT
philosophy”, the current one is not necessarily the best solution. Alternatives may be
simpler, cognitively more plausible or better at predicting observable phenomena. For
instance, Giorgio Magri has suggested to employ a linear combination of the weight
distributions (10) and (11), with the “trust factor” being the “meta”-weight of the
former distribution. An anonymous reviewer added that using Eq. (12) “literally” is
possible whenever constraint violations are upper bounded, and so the OT harmony
vector can be turned into a scalar target function with exponentially spaced weights.
Thus we would arrive at Maximum Entropy OT (Jäger 2003; Goldwater and Johnson
2003) in the Robust Interpretive Parsing stage of learning, considering all candidates
with a traditional, non-zero Boltzmann probability. 13 Unfortunately, pursuing these
ideas have to be deferred to future work.

4 Generalized Robust Interpretive Parsing: Practical Implementation

Let us now put all these ingredients together into a single, implementable procedure.
Figure 1 introduces the pseudo-code of the Generalized Robust Interpretive Parsing
Algorithm, henceforth GRIP.

The basic structure of GRIP was inspired by the Simulated Annealing for Optimal-
ity Theory Algorithm (SA-OT) (Bíró 2006). The core of the procedure is embedded
in a double loop, the outer one decreasing parameter K and the inner one decreas-
ing parameter t. The earlier vector T is now replaced by the variable pair (K,t).
In each iteration, Teacher produces a piece of learning data (for instance, using a sin-
gle underlying form, or randomly choosing from a pool/base/lexicon of underlying
forms). This piece of of learning data is an overt form, and the set W contains all pos-
sible surface forms (or candidates) that are uttered as of. We suppose that the unique
underlying form uf corresponding to of can be recovered, or it is otherwise provided.
This uf serves, in turn, as the input to Learner’s production algorithm, and Learner’s
currently hypothesized grammar will determine the loser candidate (or surface form)l.

13 Unlike many OT models, the approach to metrical stress discussed in Sect. 5 has bounded constraints,
even though the upper bound depends on the number of syllables in the underlying form. Therefore, for
each input, there exists a q > 1 such that the powers of q can serve as the weights in a Harmony Grammar (a
q-HG grammar) equivalent to the corresponding OT grammar. In order to compare the two approaches, one
also needs to translate the cooling schedule in OT—that is, parameters Kmax, Kstep, tmax, tstep, etc.—into
a traditional cooling schedule; for a possible solution, refer to Biró (2009).
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Fig. 1 Learning with the Generalized Robust Interpretive Parsing Algorithm (pseudo-code). The two
versions of the method Constraint-selection are given on Figs. 2 and 3. Command Update
updates Learner’s grammar, as a function of sets wpc, lpc and the update rule

Fig. 2 Constraint selection in traditional Robust Interpretive Parsing (pseudo-code). C(f) denotes the
violation level of candidate f by constraint C

Then, the purportedly universal set of constraints is selected into winner preferring
constraints (the set wpc), loser preferring constraints (the set lpc) and even (neu-
tral) constraints. In traditional Robust Interpretive Parsing, the constraint selection
procedure (Fig. 2) chooses a single winner candidate w, the most harmonic element
of W with respect to Learner’s hierarchy H. Then, it defines the sets wpc and lpc by
applying each constraint in H to l and w.

Yet, we now suggest employing the novel constraint selection procedure on Fig. 3.
This latter code is composed of two parts: First the weights of the candidates in W are
calculated, conform to Eqs. (17) and (18). Subsequently, the sets wpc and lpc are
populated, according to Eq. (22). The parameters beta and lambda, introduced in

123



158 T. Biró

Fig. 3 Novel constraint selection procedure for GRIP (pseudo-code). C(f) denotes the violation level of
candidate f by constraint C. The code fatal_constraint(w1, w2, H) refers to the highest ranked
constraint in hierarchy H that assigns a different violation level to w1 than to w2; and null, if the two
violation profiles are the same. The index (in the formal sense) of constraint C in hierarchy H is denoted by
index(C, H): the number of constraints ranked lower than C in H

Sect. 3.5, are set to 0 in the default case, but offer an additional possibility to fine-tune
the performance of the algorithm.

Observe that the new constraint selection procedure (Fig. 3), unlike the traditional
one (Fig. 2), makes use of the loop variables K and t. Therefore, the loops have a
deeper meaning in the Generalized RIP algorithm with the novel constraint selection
procedure: through the calculation of the weights, these variables influence which
constraints are categorized as loser preferring or winner preferring. In the traditional
RIP procedure, they did nothing more than repeating the learning steps a specified
number of times. Another point to note is that the algorithm makes it technically
possible to assign any values to the loop parameters, such as a negative or non-integer
to Kmax, while Sect. 3.4 required Kmax to be an integer greater than n − 1.

Let us turn back to Fig. 1. Some of the constraints have been put in the sets wpc
or lpc. So Learner’s grammar can be updated according to an update rule. These
update rules typically promote the constraints in wpc and/or demote the constraints in
lpc. The learning algorithm can be successfully terminated at this point, if Learner’s
grammar is identical to Teacher’s hierarchy, or if the two are equivalent: they generate
the same language type in the factorial typology, or at least Learner can reproduce the
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observable learning data. If, however, the update results in a previously seen hierarchy,
then Learner has entered an infinite loop, and so the learning algorithm returns with
failure. Finally, if none of these two cases happen, the embedded loops run the algo-
rithm further, until both loop variables have not reached their final values. If Learner
has still not acquired the target grammar, or a grammar equivalent to it, then the algo-
rithm exits with a failure message. One might want to make sure that this happens
not because the parameters K_max, K_min, K_step, t_max, t_min and t_step
allow a too short learning procedure, but because the algorithm does not converge.

5 Example: Metrical Stress

5.1 The Linguistic Model

In this last part of the paper, we demonstrate that the revised version of learning with
robust interpretive parsing can indeed be more successful. We turn to the example
discussed by Tesar and Smolensky (2000), chapter 4: metrical stress assignment with
the twelve constraints to be presented soon. Among 124 randomly chosen languages,
traditional RIP learned 75 with a monostratal initial hierarchy. This figure could be
increased to 94 or 120, if some constraints were ranked higher in the learner’s initial
hierarchy. Can GRIP do better? This section argues it can.

The task is to add primary (and, optionally, secondary) stress to the input, which
is composed of (light or heavy) syllables. Syllabification is already specified in
the input: underlying forms contain the segments and the syllable borders (such as
ho.cus.po.cus). The overt forms also contain stress information (hó.cus.pò.cus). How-
ever, the model still requires additional structures—namely, foot brackets—on the
intermediate surface level ([hó].cus.[pò.cus]), not present in either the underlying
forms, or the overt forms.

The foot structure must meet the following criteria:

– A foot contains exactly one or two syllables.
– A foot has exactly one head syllable, which carries (primary or secondary) stress.
– A word contains exactly one head foot, whose head syllable carries primary stress.
– A word may additionally contain zero or more feet whose head syllable carries

secondary stress.

The Gen function maps underlying form u to the set of all surface forms satisfying
these criteria, while leaving the segmental material and syllabification unchanged.
Constraints refer to the surface forms. The most harmonic surface form w∗ is uttered
as the overt form o that is arrived at from w∗ after deleting the foot brackets (but leaving
the stress pattern unchanged). Reversedly, an overt form o is mapped by RipSet to the
set of those surface forms that contain the same stress pattern.

Constraints are traditionally defined in terms of the criteria to be satisfied. However,
GRIP views constraints as functions, and therefore we provide both definitions of the
twelve constraints employed, which had been implemented in the OTKit software
package (Biró 2010):
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– Foot Binarity (FootBin): Each foot must be either bimoraic or bisyllabic. Thus,
assign one violation mark per foot that is composed of a single light syllable.

– Weight-to-Stress Principle (WSP): Each heavy syllable must be stressed. Thus,
assign one violation mark per every heavy syllable that is not stressed.

– Parse-Syllable (Parse): Each syllable must be footed. Thus, assign one violation
mark per syllable unparsed into some foot.

– Main-Left: Align the head-foot with the word, left edge. Assign one violation
mark per each syllable intervening between the left edge of the word and the left
edge of the head foot.

– Main-Right: Align the head foot with the word, right edge. Assign one violation
mark per each syllable intervening between the right edge of the head foot and the
right edge of the word.

– All-Feet-Left: Align each foot with the word, left edge. For each foot, assign one
violation mark per each syllable intervening between the left edge of the word and
the left edge of that foot.

– All-Feet-Right: Align each foot with the word, right edge. For each foot, assign
one violation mark per each syllable intervening between the right edge of that
foot and the right edge of the word.

– Word-Foot-Left (WFL): Align the word with some foot, left edge. Assign one
violation mark to the candidate iff the left edge of the word does not coincide with
the left edge of some foot.

– Word-Foot-Right (WFR): Align the word with some foot, right edge. Assign one
violation mark to the candidate iff the right edge of the word does not coincide
with the right edge of some foot.

– Iambic: Align each foot with its head syllable, right edge. Assign one violation
mark per foot whose last (single or second) syllable is not stressed (that is, per
binary trochees).

– Foot-Nonfinal(FNF): Each head syllable must not be final in its foot. Assign one
violation mark per foot whose last (single or second) syllable is stressed (that is,
per monosyllabic feet and binary iambs).

– Nonfinal: Do not foot the final syllable of the word. Thus, assign one violation
mark to the candidate iff the last syllable of the word is footed.

These constraints are widely used in OT phonology, even though they are not
uncontroversial. 14 We employ them not because we are convinced of their existence
in the grammars of the languages of the world; but for the sake of comparability with
the results of Tesar and Smolensky. Adding or removing constraints slightly affects
the success rate, as observed in pilot experiments, and yet, the main message does not
depend on the details of the toy grammar: the Generalized Robust Interpretive Parsing
Algorithm improves the learning success rate with respect to traditional RIP.

Within the definitions of the constraints, the term ‘word’ always refers to prosodic
words. A syllable will be considered heavy if it contains a long nucleus or a coda.

14 The use of gradient alignment constraints, such as All-Feet-Left/Right, was criticized a decade ago, both
from computational and typological perspectives (Eisner 1997; McCarthy 2003; Bíró 2003).

123



Towards a Robuster Interpretive Parsing 161

This information is available to the learner already before learning starts—a non-
realistic simplification that needs to be elaborated in future research on OT learnability.

In our grammars, differently from EDCD, each of these constraints has a rank, a real
(or floating point) number. During production, the constraints are sorted by rank, and
a higher rank value corresponds to being ranked higher in the hierarchy. The update
rules of the learning algorithm increase or decrease these rank values, so that after
a number of increases and decreases the constraint hierarchy gets permuted. So far,
the notions ‘grammar’ and ‘hierarchy’ were used interchangeably, because in OT, a
grammar is modelled by a hierarchy. Yet, henceforth, a ‘grammar’ will refer to the set
of real-valued ranks, whereas a ‘hierarchy’ will refer to the ordering relation defined
by these values. Learning alters the grammar, the grammar determines the hierarchy,
and the hierarchy is used to find the most harmonic element of a candidate set.

5.2 The Experimental Setup

At the beginning of each learning experiment, both the teacher and the learner is
assigned a random grammar: each of the twelve constraints is associated with a random
floating point value between 0 and 50. The use of floating point values diminishes the
chances of two constraints ever having the same rank to practically zero. Should this
case nevertheless happen, then the two constraints are “randomly” ranked, depending
on details of the sorting algorithm. As explained in a moment, most of the update rules
change the rank of a constraint by 1, and therefore, the initial rank range between 0
and 50 implies that a few, but not many learning steps are needed on average to rerank
two neighbouring constraints. As learning proceeds, the constraints in the learner’s
grammar will probably leave this [0, 50[ interval, without any consequence.

We used the following four update rules (“highest ranked” denotes the highest
ranked constraint in the learner’s grammar):

– Boersma: Demote all loser preferring constraints by 1, and promote all winner
preferring constraints by 1 (Boersma 1997; Boersma and Hayes 2001).

– Magri: Demote the highest ranked loser preferring constraint by 1, and promote all
winner preferring constraints by 1/W , where W is the number of winner preferring
constraints (Magri 2011, 2012).

– Alldem: Demote all loser preferring constraints by 1.
– Topdem: Demote the highest ranked loser preferring constraint by 1. 15

The learning data were produced by the teacher, who could generate out-
puts from four inputs (underlying forms). These were: a 5-syllable word with
two heavy syllables (ab.ra.ca.dab.ra), a 5-syllable word without heavy

15 Topdem was called Minimal GLA in Boersma (1998), where a correctness proof is also provided.
Moreover, the Error Driven Constraint Demotion Algorithm (EDCD) of Tesar and Smolensky roughly
corresponds to our Alldem and Topdem methods. We did not implement the original EDCD for two reasons:
First, it does not use numeric ranks, and therefore its results would not be comparable to the results
produced by other approaches. Second, the way EDCD uses strata (“pooling the marks”) raises serious
doubts (Boersma 2009). Moreover, according to Boersma (2003), his update rule in combination with RIP
is more successful than EDCD in learning metrical stress.
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syllables (a.bra.ca.da.bra), a 4-syllable word with two heavy syllables
(ho.cus.po.cus) and finally a 4-syllable word with heavy syllables only
(hoc.cus.poc.cus). We ran five types of experiments: the teacher either used
only one of the four inputs consistently (types a.1 to a.4), or the teacher randomly
chose an input from the ‘base’ of these four underlying forms before each learn-
ing step (type b). The latter case is closest to the original experiments of Tesar and
Smolensky.

Additionally, we also varied the loop parameters (Kmax, tstep, etc.) of the General-
ized RIP algorithm, as well as β and λ in the constraint selection procedure.

Given a parameter setting (update rule, input type, loop parameters, β and λ), we
repeated the learning experiment a high number (N , as reported below) of times, each
time with a new, randomly generated target hierarchy and learner’s initial hierarchy.
Then, we measured the success rate, that is, the proportion of the runs during which
the learner acquired a grammar identical or equivalent to the teacher’s grammar. To
compare the success rates of two different parameter settings, we had the R software
package (version 2.11.1) perform a 2-sample test for equality of proportions without
continuity correction (a chi-square test).

As an anonymous reviewer rightly observes, Tesar and Smolensky (2000) report
that the choice of the initial ranking matters for RIP. Whereas we initialized the learner
with a randomized hierarchy, they provided her with specific ones—and with stratified
hierarchies, at that, which were incompatible with our update rules. Nevertheless, the
dependence of the success rate on the initial hierarchy is an important fact, which
should be also tested in the future for GRIP. (Similarly, the data presentation order
may also play a role.) Note, moreover, that our experiments did not follow the exper-
imental setup of Tesar and Smolensky in other respects, either. Thus, we have not
used a lexicon (base) of 62 words, as it would not be feasible to repeat the experiment
sufficiently many times to prove significant differences between various parameter
combinations. We also do not report the number of learning steps necessary to reach
convergence.

5.3 Preliminary Experiments

We have revised the constraint selection procedure in order to diminish the chances
of failure that are due to a “misinterpretation” of the learning data. Yet, learning can
also fail for a number of further reasons, and these factors have to be discarded before
we argue in favour of the novel approach.

The success rate measures how often it happens that the learner finds a hierarchy
that generates the same output as the teacher does; in type-b experiments, a hierarchy
that generates the same outputs as the teacher does for all four inputs. Failure occurs in
two cases. Either the learner has entered an infinite loop, that is, the update results in a
grammar that has already been entertained by the learner, or the ends of the loops are
reached. Note that an infinite loop requires the grammar to be the same as earlier, not
only the hierarchy. Moreover, we do not check for infinite loops in type-b experiments,
because a different presentation order of the data may help the learner escape from
the loop. We do not check for infinite loops either, as long as loop variable K has
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not dropped below 0, because the novel constraint selection procedure can update the
same grammar in different ways for different K and t values in the early phases of the
learning process.

The second case when the learning is considered a failure is when the ends of
the embedding loops are reached, that is, both K and t take their minimal values.
Then, we suppose the learner’s grammar diverges, although we cannot test it in an
automatized experiment. It may also be the case, however, that an otherwise convergent
learning process is stopped too early, before having been given the sufficient number
of learning data. To control for this eventuality, we have tested what happens if the
learning algorithm is offered much longer time.

In a preliminary experiment, we launched the learning process with Kmax = −10.
Since loop variable K is always below the index of the fatal constraint, the
novel constraint selection procedure reduces to the traditional method. Having set
Kmin = −110, Kstep = 1, tmax = 10 and tmin = 0, we have compared the condi-
tion tstep = 1 (that is, 1,000 pieces of learning data) to the tenfold longer learning
condition tstep = 0.1 (resulting in 10,000 learning steps). For each of the four update
rules, five input types and these two conditions, the success rate was measured based
on N = 50, 000 learning experiments. We did not find that more learning data would
improve the success rate at any significant level—with a single exception, to which
we return immediately.

In our subsequent experiments, the learner receives 2,000 pieces of learning data,
twice as much as in the less advantageous condition above. Namely, unless other-
wise specified, the standard values shall be Kmax − Kmin = 100, Kstep = 1, tmax =
10, tmin = 0 and tstep = 0.5. At least 1,500 of these pieces of data will be given
when K is already below 0. Additionally, the success rate values will be measured
by running not more than N = 50, 000 learning experiments, usually resulting in a
larger error margin. Hence, we shall not worry about the reported success rate values
being significantly affected by cases of otherwise successful learning processes being
stopped too early.

The single exception is Boersma’s update rule and type-b input. In this case, increas-
ing the upper threshold of learning steps from 1,000 to 10,000 improves the suc-
cess rate from 77.9 to 78.3 %. This difference is significant (N1 = N2 = 100000,

X1 = 77934, X2 = 78316, χ2 = 4.247, d f = 1, p = 0.03932, and the 95 % con-
fidence interval of the difference is [0.018 %; 0.74 %]). As the algorithm does not
check for type-b inputs whether it has entered an infinite loop, this increase of the
success rate is directly related to the decrease of the number of experiments reaching
the threshold. It follows that the success rates in the configurations using Boersma’s
update rule and type-b input should be looked at with caution: some 0.5–1 % of the
failures may be due to too few data.

A second factor contributing to the failure of a learning algorithm is that not all
update rules provably converge in the general case. For instance, Topdem and Magri’s
update rules converge (see Boersma (1998) and Magri (2012) respectively), and so
does Error Driven Constraint Demotion (EDCD) with Boersma’s correction (Boersma
2009). However Pater (2008) has shown examples in which Boersma’s rule does not
(see also Magri (2012) for a discussion). In practice, however, theoretically non-
convergent update rules can also perfectly behave for a particular linguistic model.
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Therefore, we have re-run our learning experiments with the only difference that
the teacher provided the surface form, and not the overt form, to the learner. Put it
differently, RipSet(o) was reduced to a singleton, so that the learning data could not
be “misinterpreted”. Both the traditional and the new constraint selection mechanisms
are reduced to simply comparing the loser surface form to the winner surface form.
Did the learners converge?

Out of hundreds of thousands of experiments, with randomly initialized teacher
and learner grammars, the learners were successful in all conditions. That is, for all
(update rule, input type) combinations, the success rate was 100 %. With a single
exception, again: Boersma’s update rule combined with input type b yielded a success
rate of 99.67 %. In other words, the current phonological model is such that Boersma’s
update rule cannot learn the target in some 0.3 % of the random initial conditions, even
if the learner is exposed to the full structural description of the winner form. These
failures are most probably not due to a too short learning process. Namely, exactly as
before, we tested whether the learning rate increases if we let the learning process run
longer, but no significant difference was found (N1 = N2 = 50000, X1 = 49817,

X2 = 49829, χ2 = 0.343, d f = 1, p = 0.5581).
As we shall immediately see it, the missing footing information in the overt forms

renders the learning problem much more difficult, with a failure rate higher by at least
one magnitude. Indeed, even provably convergent update rules (such as Magri’s and
Topdem) will also yield a high number of unlearnable initial conditions.

5.4 The Role of Kmax

The most important parameter of the GRIP Algorithm is Kmax. It sets the initial value
of the loop variable K, which in turn determines which constraints are selected as
winner preferring, and which ones as loser preferring. Remember that the indices of
the n constraints range from 0 to n − 1, and if the index of the fatal constraint is
greater than K, then the worse of the two candidates in RipSet(o) does not influence
the constraint selection procedure. If, however, the index of the fatal constraint is less
than K, then the two candidates play an equal role.

Consequently, whenever K is negative, then only the best element of RipSet(o) plays
a role, and we fall back to traditional RIP. A negative Kmax ensures that this happens
during the entire learning. If, on the contrary, K is greater than n − 1, all elements in
RipSet(o) contribute equally to the constraint selection procedure. A Kmax larger than
n − 1 guarantees that this will happen in the first phase of the learning. Moreover, the
larger the Kmax, the longer this first phase.

If taking into consideration the entire RipSet(o) set has an advantage over just
considering its best element, that is, if GRIP with the novel constraint selection pro-
cedure is better than traditional RIP, then we expect a significant difference between
the Kmax ≥ n condition and the Kmax ≤ 0 condition. Currently, we have n = 12
constraints, and Figure 4 displays the learning success rates.

For each parameter combination, type a.1 to a.4 learning experiments were launched
N = 10, 000 times. The four boxes on the figure correspond to the four underlying
forms, respectively. Moreover, the different update rules are represented as different
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Fig. 4 Learning success rates with different Kmax values. The input underlying form was
ab.ra.ca.dab.ra (upper left box), a.bra.ca.da.bra (upper right), ho.cus.po.cus (lower
left) and hoc.cus.poc.cus (lower right). The update rules were Boersma’s (data points denoted by
diamond), Magri’s (oplus symbol), Alldem (inverted triangle) and Topdem (triangle). Solid lines show
extremely significant differences, and dotted lines connect data points not differing significantly

shapes of the data points (see the caption). The rest of the parameters are standard:
Kmin = Kmax − 100, Kstep = 1, tmax = 10, tmin = 0, tstep = 0.5, β = λ = 0.
The learning success changes as a function of Kmax. The style of the connecting line
shows whether the change between neighbouring data points of the same update rule
is significant: a solid line is used for p < 0.001, a dashed line if 0.001 ≤ p < 0.01,
a dot-dashed line if 0.01 ≤ p < 0.05, whereas dotted lines connect data points not
differing in a significant way.

The leftmost data point (Kmax = 0) of each curve practically corresponds to the per-
formance of the traditional RIP algorithm. The effect of GRIP can be observed as we
move to the right along the curves. Even though the details of the graphs vary per update
rule and input type, it nevertheless can be observed that the learning success signifi-
cantly increases as Kmax changes from 8 to 15. Interestingly, a Kmax that is less than two
third of the number of constraints does not have a measurable advantage over traditional
RIP in most of the cases. It seems that the errors misleading the traditional RIP proce-
dure are made in the upper third of the hierarchy, and therefore it does not help if the
novel algorithm tolerates fatal violations in the lower two thirds. What does help is to be
tolerant towards violations in the upper third, at least in the early phases of the learning.

Another interesting observation is that increasing Kmax beyond 15 may also ame-
liorate learning. Even if it only happens for a few parameter settings, it seems that
allowing for a longer first phase, during which the entire RipSet(o) set plays an equal
role, can help avoid learning failures due to misinterpreting the learning data.

Comparing the different inputs and different update rules, it is easy to see that the
chosen input type influences the success rate much more than the employed update
rule. At high Kmax values, the update rule can also make a difference, though. At
low Kmax values, however, that is, when traditional RIP is used, all four update rules
have a comparable—even if sometimes statistically speaking significantly different
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Fig. 5 Learning success rate as a function of Kmax, if the teacher produces a random learning data sample
containing all four underlying forms with equal probability (type-b input). Each data point corresponds to
N = 40, 000 experiments. For further details, please see main text and caption of Fig. 4

—performance, for each input. Why is it so? The reason is unclear to us, and it may
be a coincidence related to the constraints in this specific linguistic model.

Figure 5 displays the results of the same experiment, but using type-b input: each
time the teacher produces a piece of learning data, he chooses one of the four underlying
forms in the ‘base’, randomly, with equal probability. Note that each data point on this
figure corresponds to N = 40, 000 repetitions of the learning experiment. Obviously,
this is a more difficult learning task, and therefore the success rates are much lower.
Yet, the tendencies are similar to what have been observed on Fig. 4, confirming the
utility of the idea behind GRIP.

The learning success improves even if Kmax is higher than 12, the number of
constraints. Interestingly, this improvement becomes non-significant for Kmax = 25
in the case of Boersma’s update rule (the data points with � symbols) and the Alldem
update rule (symbol ). These are the rules that demote all loser preferring constraints.
The other two update rules—Magri’s ( ) and Topdem ( )—demote only the highest
ranked loser preferring constraint and they significantly benefit even from having Kmax
as high as 25. An explanation might be that the former two approaches move around
more constraints, and so they typically converge faster, probably within a few cycles
of the outer loop. Whether loop variable K diminishes from 25 to 20, or from 20 to 15
in the meanwhile, does not influence the success rate.

5.5 The Role of tstep

By tuning parameter Kmax, we have controlled the starting point of the learning pro-
cedure. A high value allowed for a longer first phase, during which each element of
RipSet(o) was considered equal. If 0 ≤ Kmax < n, where n is the number of the
constraints, and so n −1 is the index of the highest ranked constraint, then the learning
procedure was immediately launched in its second phase, during which some elements
of RipSet(o) are already “more equal than others”. Finally, Kmax < 0 corresponds to
starting learning immediately in the third phase, that is, when only the most harmonic
element of RipSet(o) is considered, similarly to the traditional RIP algorithm.

Most of the other parameters—Kstep, tmax, tmin and tstep—primarily influence the
length of each of these phases. For instance, let us compare the condition tstep = 1 to
the condition tstep = 0.1. In the latter case, the inner loop is run ten times longer for
each value of the outer loop’s variable K.
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Fig. 6 Learning success as a function of Kstep with different tstep values, using Boersma’s update rule and
a.bra.ca.da.bra as input. Data points denoted by a diamond correspond to tstep = 1.0, and those
by a bullet to tstep = 0.1. The significance of a difference is shown by the style of the connecting line for
neighbouring Kstep values, and by the stars above the data points for same Kmax and different tstep values

In some cases in the previous section, we could observe a significant improvement
if the first phase was longer, that is, if Kmax was increased from 12 to 15 or 25. In
these cases, the high Kmax combined with a reduced tstep should ameliorate the success
rate even further. In Sect. 5.3, a different phenomenon occurred to the type-b input
feeding Boersma’s learning algorithm: since convergence might require a huge number
of iterations, the success rate depended on the length of the third phase. A decreased
Kmin or, equivalently, a decreased tstep would prolong the third phase, thereby ensuring
higher success.

The most interesting question is what happens if lengthening either the first, or
the third phase does not help. Such was the case with Boersma’s update rule applied
to input types a.1 to a.4. Figure 6 presents the results obtained by this update rule
and input underlying form a.bra.ca.da.bra. (Kmin = Kmax − 100, Kstep = 1,

tmax = 10, tmin = 0, λ = β = 0. Number of experiments N = 50, 000 for each
parameter setting.) The graph should be compared to the diamonds on the upper right
panel of Fig. 4.

We can observe that whenever Kmax ≥ 7, then the tstep = 0.1 condition (shown
using • symbols) is significantly more successful than the tstep = 1.0 condition (dis-
played with � symbols). The conclusion is that running the inner loop longer during
the first third of the second phase improves the learning success. The last two thirds of
the second phase does not help much anymore: run it longer or shorter, your chances
of success are hardly distinguishable from those of the traditional RIP algorithm.

If we replace the underlying form a.bra.ca.da.brawith ho.cus.po.cus,
we obtain a similar picture: no significant difference as Kmax ≤ 8, but a success rate
higher for tstep = 0.1 than for tstep = 1.0 as 9 ≤ Kmax ≤ 13. Having more iterations
in the upper third of the second phase is beneficial. Yet, the difference between the
two tstep values vanishes again to non-significant, as Kmax reaches 15, and the success
rate saturates at 99.75 %. Note that in this configuration of the experiment, all failures
are due to entering an infinite learning loop, while Kmin is never reached.

5.6 The Role of β and λ

In Sect. 3.5, we suggested to enlarge the margin between winner preferring constraints
and loser preferring constraints. Equation (22) introduced two further parameters to
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Fig. 7 The role of the β and λ parameters, using Boersma’s update rule, with inputs ab.ra.ca.dab.ra
(left panel) and a.bra.ca.da.bra (right panel). Success rate (vertical axis) runs from 90 % (left) or
80 % (right panel) to 100 %. Connecting line styles reflect significance

the GRIP algorithm, β and λ. By making the former one positive, we can avoid
promoting constraints that can barely be argued to be winner preferring. Similarly, a
positive λ prevents the demotion of constraints whose preference for the loser relies
on scarce evidence. Thus far, our experiments set both of these parameters to zero.
Does increasing them improve the learning success rate?

Parameter β does not play a role in the demotion-only update rules, Alldem and Top-
dem. For the two other update rules, we have hardly found a significant improvement
by playing with β. Surprisingly, β = 0.1 sometimes leads to a significant worsening in
comparison to both the β = 0.0 and the β = 0.2 cases. The latter is typically compa-
rable to or slightly worse than the β = 0.0 baseline. Subsequently, further increasing
this parameter will gradually diminish the success rate. The results of some experi-
ments are reported on Fig. 7. (N = 50, 000 for each (β, λ) parameter combination;
Boersma’s update rule, and Kmax = 15, Kmin = −85, Kstep = 1, tmax = 10, tmin =0,

tstep = 0.5.)
However, tuning the λ parameter can very much help the learner. Figure 8 presents

the learner’s success rate using different λ-values. (The loop parameters are the same
as in the previous experiment, and β = 0. Each data point was measured from
N = 50, 000 experiments.) Each of the four update rules are displayed using their
usual symbols, and significance is shown by the style of the connecting lines. The
left panel is based on input ab.ra.ca.dab.ra, whereas the right panel on input
a.bra.ca.da.bra.

In the former case, all four update rules benefit from increasing λ. Boersma’s
update rule reaches its maximum at λ = 0.6, the other three at λ = 0.4. Beyond 0.6,
learning performance falls drastically, probably because too many constraints fail to
be classified as loser preferring in the first two phases of GRIP.

A similar fall can also be observed for the second input. Yet, in this case, it is
only Boersma’s update rule which really benefits from increasing λ. Still, note the
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Fig. 8 The role of λ for the four update rules, Kmax = 15, β = 0 and inputs ab.ra.ca.dab.ra (left
panel) and a.bra.ca.da.bra (right panel). For further details, see caption of Fig. 4

highly significant decrease for λ = 0.1! A similar fall is also observable for the
Alldem update rule, with a subsequent rise. The improvement with respect to λ = 0
is highly significant both in the λ = 0.2 condition (p = 0.00011) and in the λ = 0.3
condition (p = 0.0012). The Topdem method starts falling as λ > 0.1, whereas
Magri’s approach does not tolerate any increase in the λ parameter.

To summarize, parameters β and λ influence the learning success in a complex way
that is probably very hard to explain. The details of the linguistic model (the constraints
and the candidates) interact with the update rules, and therefore the size β + λ of the
margin between the winner preferring constraints and the loser preferring constraints
may have very different consequences. Nevertheless, we are confident that fine-tuning
these two parameters may turn to be a useful tool to further improve the performance
of any specific learning algorithm applied to any specific linguistic model.

An additional complicating factor is the fact that some constraints are either satisfied
or violated, whereas other constraints may assign the candidates a broad range of vio-
lations. It follows that the weighted mean violation by RipSet(o) of certain constraints
must always fall between 0 and 1, whereas the mean violation of other constraints is
often much higher. Consequently, the margin β + λ should probably vary per con-
straint, and Eq. (22) should contain a different βi and λi for each constraint Ci . For
instance, if the range of constraint Ci is between 0 and mi (that is, 0 ≤ Ci (c) ≤ mi

for any c ∈ Gen(u)), then it may be reasonable to use βi = β · mi and λi = λ · mi in
Eq. (22). We leave this train of thought at that.

6 Summary

Structural information that are present in the surface forms—such as phonological
and syntactic parsing brackets, coindexation and thematic role assignments—typically
play a central role in linguistic theories. Yet, they are very often missing from the overt
forms, the linguistic utterances that serve as the input to language interpretation and
language learning. Hence the need for an interpretive parsing algorithm.

Error-driven online learning algorithms in Optimality Theory compare the winner
candidate, produced by the teacher, to the loser candidate, produced by the learner.
The error, the difference between these two forms, serves as the trigger for updating the
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learner’s hypothesized grammar. This is, however, not possible, if the learner does not
have access to the full structural description of the winner form. The solution proposed
by Tesar and Smolensky was to rely on the learner’s current grammar when choos-
ing the winner candidate from the set RipSet(o) of potential winners corresponding
to the observed overt form o. Yet, unlike the convergent Expectation-Maximization
approaches that served as inspiration for their Robust Interpretive Parsing/Error-
Driven Constraint Demotion algorithm, this linguistic problem fails to converge too
often. The reason is that the learner relies too early on her hypothesized grammar
in interpreting the learning data, and misguided decisions may fatally lead to infinite
loops and other forms of divergence.

Consequently, we have introduced the novel Generalized Robust Interpretive Pars-
ing (GRIP) algorithm, its idea being that the learner’s grammar ought to be trusted
only gradually. We have shown how to define the Boltzmann distribution in the con-
text of non-real valued Optimality Theory, and how to apply it to the set RipSet(o) of
potential winner candidates. Its parameter T (‘temperature’), not a scalar but a vector
in the context of OT, shall correspond to the inverse of our “trust” in the learner’s
grammar. In the first phase of learning, T is high, and all elements of RipSet(o)

equally contribute to determining which constraints are to be handled by the update
rule as ‘winner preferring’, and which constraints as ‘loser preferring’. In the second
phase, the higher part of the learner’s constraint ranking is trusted, and candidates
in RipSet(o) that meet their Waterloo for these highly ranked constraints lose their
“right to vote” about the promotion and demotion of the constraints. Finally, in the
third phase, when T has become very low, the best element of RipSet(o) with respect
to the learner’s hierarchy becomes the only winner candidate, just as in traditional RIP.
Hopefully, by this moment, the learner has sufficiently updated her grammar so that
this hierarchy makes indeed the correct choice (at least, not a totally misleading one)
in RipSet(o)—something traditional RIP already hopped for at the very beginning of
the learning process.

In the last part of the paper, we have demonstrated that GRIP increases the learning
success rate in comparison with traditional RIP. For instance, Boersma’s update rule
(known as the Gradual Learning Algorithm, or GLA), has a learning success rate (with
randomly initialized teacher’s and learner’s grammars) of 94 % in the task of assigning
metrical stress to the input ab.ra.ca.dab.ra. By using Kmax ≥ 15 in GRIP, this
success rate increased to 98.1 %. By fine-tuning two more parameters (β = 0.0 or
β = 0.1, and λ = 0.6), the success rate reached a value as high as 99.5 %. The same
values for input a.bra.ca.da.brawere 84 % in the traditional RIP case, 93 % for
Kmax = 15, and 97.6 % after fine-tuning (β = 0.2, λ = 0.4). Similar improvements
could be achieved using the three other update rules, as well.

At the same time, we could observe that the linguistic model (the Generator function
and the constraints), the update rule and the input interact in a complex way, and there-
fore the behaviour of GRIP as a function of its parameters cannot be predicted. Formal
proofs exist for the convergence of simulated annealing and expectation-maximization
algorithms in real-valued contexts. Formal proofs exist for the convergence of
certain update rules in Optimality Theory, if the learner is presented with full struc-
tural descriptions. Yet, it is still an open question whether GRIP combined with some
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update rule can be demonstrated to be convergent, provided that the parameters of
GRIP become sufficiently large or very small.
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