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Abstract

The purpose of my paper is to present the first approaching steps between physicists and linguists, to show what possibilities
can be found to relate these seemingly very distant disciplines. The field they meet is the examination of statistical properties
of symbol sequences, such as written texts.

[ shall present three “statistical games” that physicists and others have been “playving™. all of them easily applicable on
computers. The first one is Zpf’s law from the 1930s. which has been generalized and reanalyzed in recent years. as it is
closely related to some fascinating statistical properties of written texts and DNA sequences. The second method. known as
random walk, proves the existence of long-range correlations in written texts, meaning that Markov models cannot give
an adequate description of written texts' statistical properties. The aim of the third “game” is to introduce a “distance” or a
“measure of similarity” between documents by using a vector-space technique, leading to a useful algorithm.

1. Introduction

[n the second half of the 20th century both physics and linguistics have undergone remarkable changes.
Modern linguistics has started to apply formal tools able to incorporate abstract mathematical models
On the other hand, physics, defined as the science of approaching the nature with mathematical concepts.
has conquered “new fields”. These “new fields”, that can be now described with mathematical and physical
means, do not only refer to the classical points of interests of physicists, like the world of atoms and molecules
(quantum chemistry), the living organisms (biophysics) or our planet (geophysics). But physical concepts
and methods have penetrated into biological modeling, as for instance the modeling of evolution. ! and even
social and economic sciences.

When speaking about the possible contribution of physics to linguistics, the first idea may be phonetics.
But this is a very well-known and well worked out field. It uses concepts of classical physics (acoustics). and
raises rather technical than physical problems. less interesting for a physicist of the very end of the 20th
century. So let me rather deal with the possible contribution of modern physics to modern Linguistics.

Most of the above-mentioned modern interdisciplinary models use ideas taken from statistical physics.
The main aim of this new branch of physics is to describe not the properties of the individual particles. but
rather the structures formed by the elements in a compler system. A central concept in statistical physics is
wniwersalism. This expression refers to classes of very different phenomena having in some manner the same
behavior. Who would think for instance, that similar chaotic behavior can be ohserved in financial. chemical.
electronical or population biological phenomena? The ideas, concepts. methods (if yvou want. “statistical

Abount the modeling of evolution see e, g Gertbz el al. (1997), an example for a physical model used o biochemistey is

presenced in Derenyt and Viesek (1996). \
2 About using thermodinamical concepts in economics, see Martinds, K. \nd Csekd, A (1995), about using statistical

physical methods in finance, see e. g. bumlcy, M. H. R. et al. (1996).
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games”) mentioned in this article can be and have been applied in linguistic, genetic and programming
contexts, as well.

What is common in a written text, a genetic code or a computer program? Each of them is a linear
sequence of symbols taken from a finite alphabet. In the case of a text, we have the usual alphabet incorpo-
rating space, comma, full stop, etc. The genetic code is a “text” over an alphabet of four “letters”, the four
bases of DNA: adenine (&), cytosine (C), guanine (G) and timine (T), these encode the genetic information.
While a computer program is a binary sequence of 0s and 1s. In addition, each of the three types of symbol
sequences has a well-defined structure, and the very aim of linguistics and genetics is to better understand
and describe this structure.

So the question arises: why not joining the forces, and utilizing each other’s results? In addition to that,
statistical physics can provide some technigues that might show us some of the similarities and differences of
these symbol sequences of very different origin. And also, modern computers can easily perform some tasks
previous generations would not do.

These newly discovered “universal properties” may then affect traditional theories, as well, when bring-
ing additional proofs or counter-arguments to them. As a very trivial exemple we shall see how statistical
properties of texts prove Chomsky’s old claim, based only on non-quantitative arguments, that natural lan-
guages cannot be described by regular grammars. If we could find a statistical property of texts that cannot
be explaned by context-free grammars, but only by context sensitive ones, that would have very serious
consequences in linguistics.

Physics, unlike abstract mathematics, is a very much quantitative science. This implies that when using
physical concepts in linguistics, probably (but not necessarily) the interest in the quantitative properties
of languages will dominate over the importance of qualitative features. Although quantitative phenomena
are only analyzed by few linguists, these are also legitime questions to ask, and have their traditions in the
linguistic literature.

In the following I will discuss three procedures, all of them easily applicable on computers. The first
two of them reveal some fascinating phenomena in the world of written texts (and also genetic codes). I am
convinced that the explanation of these findings given by a mathematician or a physicist cannot be complete
if not correct from a linguistic point of view, as well, consequently they may effect linguistic theories. The
third procedure may have less relation with theoretical issues, but might lead to some useful techniques in
different applications.

A last remark before going into details. One may ask, where is physics in the followings. My answer
is that nowhere, if we understand “physics” in its traditional meaning. But these questions have interested
physicists, who published articles about them in physical papers, and the consequence of this fact is that
the method of approaching the topic is rather the physical than the mathematical or linguistic (genetic) way
of approaching it. This explains one of my favorites sayings: “Physics is what physicists deal with”, so this
topic can also be considered as physics.

2. The Zipf-analysis

The first “statistical game” I wish to present is the oldest one of the three, going back to G. K. Zipfs
works in the 1930’s (c.f. Zipf (1935, 1949)). The idea is very simple, but the result is surprising, and raises
questions leading physicists to publish articles about it even in the 1990’s. The technique has been used to
analyze DNA sequences only in recent years. (C.f. Czirdk et al (1995) and (1996).)

Let us suppose we have a fairly long text, for instance a novel or an article in this collection, and let us
calculate for each word occurring in the text the number of times it appears. This task can easily be done
by a computer. It is obvious that articles, prepositions, auxiliaries can be characterized by a much larger
frequency, 1. e. number of occurrences, than rare nouns. (Let me not deal with secondary questions like
whether inflected words count as one or as different words.)

In the next step let us order these words in decreasing rank order of frequency: k = 1 refers to the most
frequent word, k = 2 refers to the second most frequent one, etc. Let P(k) denote the frequency (number of
appearances) of the kth most frequent word. It is obvious that:
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P(1)> P(2) > .. > P(N), (2.1)

The question that arises now is what kind of function P(k);. the so-called Zipf-function is? A very
reasonable guess would be that P(k) decreases as an ezponential function (as a geometrical progression),
I e. for instance the frequency of the second most frequent word is the half of the frequency of the most
frequent one, the frequency of the third most frequent word is the half of the second most frequent one, etc.

But it turned out very quickly that it is not the case! Rather it became obvious that P(k) can be much
better approximated by a power law function:

(2.2)

where A is an uninteresting constant and p is estimated usually to be around 1.0. This relationship is refered
to as Zips's law. In modern statistical physics these power laws play an important role and are connected
to mystical concepts such as “fractals”, “chaos” or “critical behavior”. We will meet similar functions in
section 4, as well.

For linguists, the fascinating discovery is that this power law behavior with an exponent p ~ 1 is
characteristic to many kinds of texts, independently of language, author or content. This amounts to saying
that Zipf's law seems to be an inherent quantitative (statistical) property of human languages.

One may ask if Zipf's law is an inherent property of all symbol sequences, in general. The answer is no:
easy stochastic models, like Markov-chains produce exponential Zipf-functions (c.f. Czirdk et al. (1995)),
and even certain types of DN A-sequences do so. One the other hand, those types of symbol sequences that
obey Zipf's law seem to share other statistical properties in common, too. (For a summary of these results
see Bird (1998).) One of these will be presented in section 4, but before that we should understand some
mathematical (statistical, physical) concepts.

3. What are correlations?

The term correlation is a basic notion in statistics, and refers to the relation that exists between two events:
the fact we know that one of them has happened influences the probability of the second to happen. In other
words: they are not independent.

Statistical physics often makes use of the correlation functions. Suppose we have two series of data, X
and Y7, for example the outcomes of two — several times repeated — experiments. We say the two series of
data are correlated if the corresponding elements of the series are not independent. If the fact that X, the
i — th element of X, is larger than the average value of X is typically accompanied by the fact that Y} is
also larger than the average of Y, then the two sets of data are positively correlated, and the corresponding
correlation coefficient C is a number larger than zero:

C:= (XN Y)—(X)(}), (3.1)

where (X - ¥7), (X)) and (}") means respectively the average (expected value) of X; - ¥, X; and Y}, over the
possible is. If C' is a number smaller than zero, i. e. the two series of data are negatively correlated, it
means that the increasing of X leads usually to a decrease in Y, and a decrease in X corresponds usually
to the raise of Y. The lack of correlation, i. e. the case when the two series are independent, results in a
coefficient equal to zero.

We may also speak about correlations within a single sequence of data: how the value of an element
in the sequence effects the element in a given [ distance. (Whether they are uncorrelated, as for instance
the outcomes of several coin tosses, or they are not independent at all, as for example when measuring the
temperature every day. It is improbable to have 30C, if on the previous day it was —5C’, but very likely, if
on the previous day it was 28C.) Now the second series to be compared is the same as the first one, but
shifted by [ positions. We can define the auto-correlation function C(l) as the correlation coefficient in the
function of the number [ of positions we have shifted the data series:
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Cl) s=(X; - Xizr) — (Xa) - (Xiga), (3.2)

where the averages are taken over all positions 1.

Now the same question raises as in section 2: what is the form of the auto-correlation function? In
some cases C'({) = 0 for [ # 0; this is the case of uncorrelated data sets. Typical examples are the outcomes
of serial coin tosses. dice casting or roulette playing. In Markov-models the probabilities for the outcomes
of the next experiment depend only on the outcome of the previous experiment, or on the outcomes of the
previous R experiments (Markov-model of order R). This is a typical example for short-range correlations,
when the correlation function diminishes to zero pretty fast, as [ — its argument — is increasing; in that case
C(l) has the form of an ezponential function. It may also happen that the system “is remembering to its
entire past”, and even events “from very long time ago” have a small influence on the next outcome. That
is called long-range correlation, and statistical physicists have special interest in phenomena producing such
behavior (such words are used as critical behavior, scaling, etc.). This case leads us to an auto-correlation
function that is a power law function.

Summing up the three possible types of behavior:

¢ No correlation: C(I) =01if [ > 0.

¢ Short-range correlations: there is a characteristic range R for the correlations, so C(I) = A-e~ "/ where
A is an uninteresting constant (e. g. Markov-processes).

¢ Long-range correlations: no R exists, C(l) = A 177, where the exponent is 0 < v < 1.

Written texts, as symbol sequences, can be rewritten as sequences of numbers. One idea may be to
replace every ‘a’s by ‘l’s, every ‘b’s by ‘2’s, every ‘c’s by ‘3’s, etc. Another try could be to rewrite every
vowel as ‘0", and every consonant as ‘1’. A third one would be to rewrite the text as a binary sequence by
replacing every letter with a five-bit code, or with its binary ASCII code, or with its Morse signal. In any
way. we get a series of numbers, and its auto-correlation function can easily be computed. So we might be
interested in correlations to be found in a rewritten text.

If we can find any correlation, the question still remains: in what measure is it due to the rewritting
procedure, to the properties of the writting system (for instance to the orthographic traditions), or to the
language itself? But it seems likely that the first two factors can only introduce short-range correlations. So
the question, whether long-range correlations exist in written texts, is the most interesting to us.

To get the answer, let me present another procedure that is much easier to apply on computers than
the direct calculation of the auto-correlation function, and gives us clearly the answer.

4. The Random-Walk Model

This procedure is called the Randomn Walk Model, and is animating a little bit this lifeless, mathematical
article, since first we have to borrow a flea from the biological department of our university! Is it perhaps
for its “close” relation to biology that it had first been applied to DNA sequences by Peng et al. (1992)7

Let us suppose, we have got a flea intelligent enough to walk along a line according our orders. Then,
let us transcript our document with the use of a binary alphabet, as mentioned at the end of the previous
section. Usually the five-bit code transcription has been used in the case of written texts. Unless our flea
is deaf. we have to read him this sequence of 0s and 1s. When reading the i-th element of the sequence. he
is supposed to move one step to the right (up, u; = 1) if this element has been 1, and one step to the left
(down, u; = —1!) if this element has been 0. Supposing that the flea’s initial position was the zero-point of
the axis, it is obvious that its position y(l) after the I-th step is the sum of the u;s:

v(l) = (4.1)

s,

The y(b) function characterizes the move of the flea in time. How can it be used for our purposes?
Obviously, the trend of y(l) shows in some way the distribution of Os and 1s, i.-e. the distribution of letters
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in our document. For instance, if we have a lot of "a’s, and this character is represented in our transcription
code by a coding sequence consisting only of ‘0’s, this fact may lead to a decreasing tendency in y(l). But
this information does not tell us much about deeper statistical properties of our original text, and is verv
dependent of the transcription code used. s

That is the point where statistical physics gives us a hint. Physicists have made extensive use of the
root mean square fluctuation function F({), taken in our case about the average of the displacement:

F20) = ((Qy(0) = (AyON*) = (Ay()?) - (dy)*, (42)

where Ay(l) := y(lo +{) — y(lo), and the averages are taken over all possible positions ly. The idea behind
this complicated expression is that the function F(!) characterizes in same way the “crazyness” of the flea,
that is the fluctuations in his path around its above-mentioned average trend.

The most important fact to know about it is that it is closely related to our well-known auto-correlation
function. To cut the long story short, F'(!) typically follows a power law:

F(l) ~ 17, (4.3)

where 0 < o < 1, and this exponent depends on what type of correlation can be found in our text.
Remember to the three cases mentioned in the previous section. If we have a purely random sequence,
a = 0.5. In the case of short (local) correlations extending up to a characteristic length R (e. g. a Markov-
chain), the asymptotic behavior (I > R) would be unchanged: « = 0.5. But in the case of long-range
correlations (where no characteristic R exists), i. e. when the probability of 1" at a position is affected
by what can be found at a very long distance, the alpha-exponent will differ from 0.3, usually in our cases
05<ax<l.

This “experiment” has been carried out with various texts, such as the original version and different
translations of the Bible, Shakespeare’s dramas, novels, a dictionary, computer programs after compilation
(.exe files), etc. The outcomes are fascinating! Let me list some of the more interesting results:

1. Texts have a constant c-exponent over decades in [, significantly different from 0.5 (in average about
0.6 —0.7). Computer programs are even “more” correlated: they scale with an exponent above 0.9. (Cf.
Schenkel et al. (1993).)

2. The size of the exponent is not characteristic of the author. While the alpha of Harlet is 0.56, the one
of Romeo and Juliet is 0.60. (Cf. Schenkel et al. (1993).)

3. Translations seem to “diminish” correlations. Although the Bible has a very high alpha value (~ 0.73).
its translations are less correlated. (Cf. Amait et al. (1994).)

4. Cutting the text into pieces and reshuffling them randomly ceases the correlations: beyond the scale of
the pieces’ length @ = 0.5. This can be explained by supposing that the long-range correlations are due
in some way to the “big-scale structure” of the whole text, and this structure is lost when reshuffling
the pieces. (Cf. Schenkel et al. (1993).) The details of this supposition are not clear and should be
worked out, from a linguistic, as well as from a mathematical point of view.

5. The examined dictionary has shown correlations much longer than entries. This contradicts our ex-
pectations, if our explanation for the previous result is correct: entries should be uncorrelated among
themselves, because their “structure” — the alphabetic order — is built up by a totally arbitrary system.
(Cf. Schenkel et al. (1993).) I do not know about any pausible explanation of this fact.

Let us go back for a moment to Zipf's law. The term n-tupple Zipf-analysis has been introduced in
recent years (Czirdgk et al. (1995,1996)), and it refers to the procedure described in section 2, with the only
difference that instead of words, we cut the sequence into n-digit-long strings, and these are the units we
count the number of occurrences of.

It has been shown by Czirdk et al. (1995) that Markovian sequences and long-range correlated sequences
have significantly different Zipf-plots. Which one fits better the Zipf-plots of written texts? The answer is
self-evident: the one of long-range correlated sequences (c.f. ihid).

The bottom line is that long range correlations have been found in written texts, i. e. Markov-models
cannot give an adequate description of the statistical properties of natural languages (at least: written
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texts). In consequence, we will seek a full and correct explanation of this fact, maybe using other stochastic
models, as SCFGs. I am convinced that a full explanation cannot be found without the use of linguistics.
Linguistic details, like what the “big-scale structure” proposed by the above mentioned supposition mean.
need to be worked out. Furthermore, as similar long range correlations have been found in some types of
DN A-sequences, as well, the knowledge that linguistics can add to the “science of correlations” might then
be used to better understand the structure of DNA-sequences, whose “language” is yet far less known for us.

5. A Vector-Space Technique

Let me now present an idea how one can measure the similarity of two texts or any symbol sequences, leading
to a useful algorithm. Called gauging similarity with n-grams by his inventor, Marc Damashek (1995), this
method consists of constructing a normalized vector from a given text, and the similarity of two texts can
be measured by their dot product.

In our case, a vector in a J-dimensional vector-space means nothing more than a series of J numbers,
and the i-th element of the series (1 < 7 < J) is called the i-th component of the given vector. Many
operations can be done with these vectors, so we may speak about the sum of two vectors or the dot product
of two vectors. ?

How can we assign such a vector to a symbol sequence?

Let us move an n-character-long “window” (n is a given number, for instance n = 3.4,...) along our
document, moving it by one character at each step. So there will be an overlap between the previous and
the actual position of the window. Then we denote each possible n-character-long string with an index 1
(i =1,2,....J). ® Let now m; be the frequency, the number of occurrences of the string (n-gram) denoted
by 7 in the text, i. e. how many times we can “see it in our moving window”. 2

Our document can be characterized by a vector x in the J-dimensional space, whose i-th component is:

my
T 1= =5 (5.1)

Zj:i m;

The 7-th component shows how often the string ¢ occurs in our text. The denominator is nothing else,
but the total number of n-grams in our text, and its only role is to allow the sum of the frequencies to be 1,
in order to make us able to compare frequencies in symbol sequences of different length.

In the next step, we would like to compare two documents, and give their “distance”, or rather their
“measure of similarity”.

If we have two texts characterized by vectors x and y, as it has just been explained, their “similarity”
can be measured as easy as the dot product of their vectors (or, to be more precise, as the cosine of the
angle between the vectors):

S = Z;Izl Tili . ( )
(S Ty

The maximum of this measure of similarity is 1, in the case of identical vectors, which occurs in practice
only if the.two documents are identical. The minimum of the dot product is zero, in the case of orthogonal

[Sa
|8

Y The sum of two vectors is a vector, whose 7-th component is the sum of the 7-th components of the original vectors. The

dot product of two vectors is a number: first we multiply the first component of the first vector with the first component of the
second one, the second component of the first vector with the second component of the second one, etc., then the dot product
giver: by the sum of all these multiplications.
% For example, if 1 = 3, then 7 = 1 may refer to the string ‘aaa’, ¢ = 2 may refer to tie string ‘aab’, etc. taking into
consideration all the letters in the English alphabet, space, comma, full stop, etc.
There is an important difference between this technique and the so-called M-tupple Zipf analysis mentioned at the end of
the previous séction: in our case the 7-grams in consideration overlap, while in the generalized Zipf-analysis we cut the symbol

sequence into disjunct n-grams.
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~1

[ Phl_ Ph2 Ph3  Phd  Phs El E2 E3. i Frl Fr2 H1 H2  H3
Phl | 10 080 082 078 0.79 069 069 0.71 0.28 0.28 026 0.29 0.6
Ph2 1.0 080 079 0.80 0.70 072 0.70 | 0.26 0.26 025 028 025
Ph3 10 078 0.77 0.70  0.71 0.69 0.23  0.24 0.23 0.27 023
Phd 1.0 073 0.65 0.67 0.67 | 024 0.23 0.24 026 024
Ph3 1.0 064 0.62 066 | 027 0.26 0.26 0.30 0.26
El 10 082 079 | 027 026 022 027 023
E2 , 1.0 080 | 024 0.25 0.22 026 0.23
E3 1.0 0.27 0.28 022 0.27 022
Frl 1.0 064 021 021 020
Fr2 1.0 0.22 0.26 023
Tl 10 074 018
H2 1.0 0.80
H3 1.0

Table 1. The similarity of different documents, measured by the dot product of their vectors, as explained in the text.
The four types of documents are: texts about physics in English (Ph), other texts in English (E), two French letters (Fr) and

e-mails in Hungarian (H). Vectors of frequencies of n = 3-grams have been used. It can easily be seen that the similarity of

texts in the same language (0,73 £0, 06) is significantly higher than the similarity of documents written in different languages
O 25 = 0,024). The influence of the topic on the dot product can also be shown in this chart, as the similarity of two

-texts (0,80 £ 0,013) or two Ph-texts (0, 79 = 0,024) is higher by 15% than the similarity of an E-text and a Ph-text
0 6 +0,03).

vectors, i. e. if there is no n-gram occurring in both documents. This measure is obviously symmetric, but
1 — S is not a distance in its mathematical sense, as it does not satisfy the triangle-inequality.

The question arises if this idea works? Let us take a set of any documents, then prepare their vectors
and calculate the dot products.

Damashek (1995) presents really fascinating results. Table I shows my results with n = 3, while table 2
shows the dot products of the vectors of the same documents, when n = 4. Phl - Ph3 are e-mail updates of
the American Institute of Physics’ Bulletin of Physics News, E1 - E3 are other e-mails in English, Frl and
Fr2 are short French letters, while H1 - H3 are personal e-mails in Hungarian. Their lengths are between
3400 to 6000 characters, except of Frl and Fr2, whose length are about 1000 - 1200 characters. My alphabet
consisted of 26 letters, space, dot and comma. Sequences of spaces should be substituted by a single space
beforehand. In order to get good results, the texts should be long enough, with respect to n and the size of
the alphabet.

Texts of the same language and topic give noticeably higher dot product than documents of different
languages. The product of a Ph- and an E-text (same language but different topics) is smaller than the one
of two Ph- or of two E-documents, but significantly higher than the product of two documents in different
anguages. (For example, in the case of n = 3, the n-gram "the’ has far the highest m, value in English
texts: copnsider the articles, to “these”, “those”, “there”, “them”, “they”, etc.) The reason for the results
with Frl and Fr2 being “poorer” is that they are much shorter, statistically not representative enough. To
sum up. the method seems to work, it can sort documents by language and maybe even by topic.

The procedure can be improved by introducing centroid vectors. Being the average of vectors taken
from a given set of document (e. g. the set of documents in a given language). they are characteristic
to the common features of this set (e. g. the grammatical words in a language). If we subtract the
centroid vector from the document vectors, we can refine our similarity measure. This method gives an
effective technique called Acquaintance for sorting and clustering documents by language, topic and sub-
topic. Another technique — based on our algorithm — can be introduced to distinguish among different
parts of a complex string of texts (c.f. Bird et al. (1998)).

What is the “linguistic” background of the success of this algorithm? Three main factors can be
mentioned as possible answers, but an exact and correct discussion of the question is still missing.

The first factor is the frequent words in the text. This is the only factor that explains why documents
written in the same language can be sorted by topic: the n-grams of the words, morphemes that are typical
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Phl Ph2 Ph3 Ph4 Ph5 E1l E2 E3 Fr1  Fr2 H1 H2 H3
Phl 1.0 062 065 0538 058 0.49 049 0.49 0.12  0.09 0.07 0.09 0.07
Ph2 1.0 064 060 0.62 0.50 0.52 0.50 0.10 0.08 0.07 0.08 0.06
Ph3 1.0 061 0.58 0.51 0.33  0.50 0.08 0.06 0.07 0.08 0.06
Ph4 1.0 0.33 0.45 0.48 0.46 0.09 0.06 0.07 0.07 0.06
Ph5 1.0 043 042 044 0.09 0.07 0.07 0.09 0.07
El 1.0 068 065 0.12 0.08 0.07 0.10 007
E2 1.0 0.66 0.11 0.08 0.07 0.09 0.07
E3 1.0 0.12  0.09 0.07 0.10 0.07
Frl | 1.0 044 0.04 0.04 0.06
Fr2 1.0 0.04 0.04 0.06
H1 1.0 046 054 |
H2 1.0 0.60
H3 1.0

Table 2. In this case I used the same documents as in table I, but I counted the m = 4-grams. The average of the
dot products is lower than in the case of n = 3, so the similarities and differences in the similarity measure are even more
striking than in the previous case. But 7 could not be further increased, as the length of the texts does not allow big ns, the

frequencies would not be accurate enough.

of the subject are overrepresented, leading to a higher value of the corresponding component of the vector.
On the other hand, grammatical words and elements of frequent syntactic structures lead to an increase in
the frequency of some strings, characteristic to the language of the document. Typical affixes, characterizing
the language or the style, should also be mentioned here.

The second factor is the phonotactics of the language. It is well known that some languages allow
some sequences of sounds, that other languages do not or only in a very restricted number. I intentionally
have written “sounds” in the previous sentence, as it is not always clear in what manner do written texts
reproduce phonemes or phones, the underlying representation or the surface representation. It is noteworthy
that phonotactical constraints referring to the border of words are also playing a role in the success of our
method, as — among the different n-grams — we also consider those starting or finishing with a space.

The last factor is not linguistic but orthographic. 1 refer here to the fact that different strings are
characteristic of the different orthographic traditions of languages, even if they represent the same sound.
Maybe a striking example is the German string ‘sch’ compared to the English ‘sh’, or ‘ch’ according to the
French tradition. This factor could be nullified if we were using documents written in a uniform phonetic
transcription.

When I asked a Croatian speaker how different Serbian is from Croatian, and the answer was “different
enough”, I understood that it is not always possible to measure some linguistic (or rather “polito-linguistic”?)
differences. Nevertheless, I hope that I have been able to present an exact technique providing a “linguistic
metric”, whose success is transparent, and represents a big advantage compared to other methods, such as
ones using for instance neuron networks. Another advantage of this algorithm is it does not need any prior
“training” or prior knowledge about the properties of languages in question.

It seems that the algorithm has been successfully used in sorting DNA sequences, as well (c.f. Bird et
al. (1998); Table 3.), a result that may contribute to genetics. I do not think that this approach can have a
big contribution to the theory of language, but the idea might be used in practice (sorting documents. for
example in a database or a library) or even in philology.

6. Conclusion

In recent years many “statistical games” have been “played” by physicists and others in order to deeper
understand the statistical properties of symbol sequences, such as DNA sequences or written texts. Some
results may*be very useful for sciences dealing with these sequences and their structure.
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[ E1 E2 E3 E4 E3 11 2 13 4 I5
El 1,00 092 092 095 0,93 0,83 0.77 0,74 033 090
E2 1,00 097 093 095 0,73 066 062 073 0.83
E3 1,00 094 094 0,73 0,65 061 071 083
E4 1,00 0,95 0,78 0,71 0,67 0,79 0,87
E3 1,00 0,76 0,69 064 077 0286
11 1,00 092 090 0,94 0,93
2 1,00 0,98 091 0,88
I3 1,00 0,90 0,86
4 1,00 0.94
15 1,00

Table 3. Similarity among different parts of DNA. E1-E5 denotes the concatenations of the exons of the five CDSs (coding
regions) of the human HUMHBB gene, while I1-I5 denotes the concatenation of the corresponding non-coding sequences. The
similarity measure is significantly higher in the case of the product of two coding or two nou-coding sequences (0.94 = 0.016
for exons, 0.92 = 0.03 for non-coding “texts”) than in the case of a coding and a non-coding sequence (0.75 = 0.08). (For
more explanation, see BiTd (1998), or Biro et al. (1998).)

The fact that Markov models cannot give an adequate description of natural languages has been known
since Chomsky's Syntactic Structures. In that case Markov models were not supposed to give stochastic
description of languages, the question was analyzed from another point of view. Results, such as the ones
presented in this article, the existence of long range correlations and the form of the Zipf-plot, have recently
proven that even statistical properties cannot really be described by Markov models, not even by higher
order Markov models. (They are useful in many way, so most stochastic approaches in linguistics still use
them.) In consequence, new stochastic models have to be analyzed in depth, whether they can fit both to
the linguistic theories and to the statistical discoveries.

In the last part of my paper I introduced a vector-space algorithm, easy to understand, to apply and to
analyze, that have already produced some results in genetics, and have been used in practical applications.
I hope the knowledge of this technique might be useful to some applied linguists, too, or — at least — may
give them some further ideas.

References and further literature

Amit, M. et al. (1994): Language and Codification Dependence of Long-Range Correlations in Texts,
Fractals, 2, 1, pp. 7-13.

Bird, T. (1998): DNS szekvencidk analizise szovegelemzési mddszerekkel [Analysis of DNA sequences
using text analyzing methods], diploma thesis, Lordnd Edtvos University, Budapest, Hungary

Birg, T.. Czirdk, A., Vicsek. T. and Major, A (1998): Application of Vector Space Techniques to DNA,
Fractals, 6, 205.

Czirdk, A., Mantegna, R. N., Havlin, S., Stanley, H. E. (1995): Correlations in binary sequences and a
generalized Zipf analysis, Physical Review E, 52, 1 , pp. 446-432.

Czirdk, A., Stanley, H. E., Vicsek, T. (1996): Possible origin of power-law behavior in n-tuple Zipf
analysis, Physical Review E 53, 6371.

Damashek, M. (1995): Gauging Similarity with n-Grams: Language-Independent Categorization of
Text, Science, 267, pp. 843-848.

Dietler, G., Zhang, Y.-C. (1994): Crossover from White Noise to Long Range Correlated Noise in DNA
Sequences and Writings, Fractals, 2, 4, pp. 473-479.

Derényi, 1., Vicsek, T. (1996): The kinesin walk: A dynamic model with elastically coupled heads. Proc.
Natl. Acad. Sci. USA, 93, pp. 6775-6779.

Ebeling, W., Neiman, A. (1995): Long-range correlations between letters and sentences in texts, Physica



10

Some statistical games on written texts

A 215, pp. 233-241.

Geritz, S. A. H., Metz, J. A. J., Kisdi, E., Meszéna, G. (1997): Dynamics of Adaptation and Evolutionary
Branching, Physical Review Letters, 78, 10, pp. 2024-2027.

Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M., Stanley, H.
E. (1994): Linguistic Features of Noncoding Sequences, Physical Review Letters, 73, 23, pp. 3169-3172.

Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K.,Simons, M., Stanley, H. E.
(1995): Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics.
Phys. Rev. E, 52, 3, pp. 2939-2950

Martins, K. and Cseks, A (1995): Extropy - A New Tool for the Assessment of the Human impact
on Environment, in: Complezr Systems in Natural and Economic Sciences, Proceedings of the Workshop
“Methods of Non-Equilibrium Processes and Thermodynamics in Economics and Environment Sciences”,
19-22 September 1995, Métrafired, Hungary.

Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., Stanley. H. E.
(1992): Long-range correlations in nucleotide sequences, Nature, 356, pp. 168-170.

Schenkel, A. et al. (1993): Long Range Correlation in Human Writings, Fractals, 1, 1, pp. 47-57.

Stanley, M. H. R. et al. (1996): Can Statistical Physics Contribute to the Science of Economics?
Fractals, 4, 3, pp. 415-425.

Zipf, G. K. (1935): The Psychobiology of Language, Houghton Miffiin, Boston.

2ipf, G. K. (1949): Human Behavior and the Principle of Least Effort, Hafner, New York.



