

Elephants and Optimality Again SA-OT accounts for pronoun resolution in child language

Tamás Biró

Alfa-Informatica, RUG

CLIN 19, January 22, 2009

Elephants and Optimality?

Possible correct interpretations of the title:

- Use of tools in explaining cognitive phenomena: should be "optimal", and not "too heavy", hitting too strong.
- Optimality Theory: hit the worst candidate.
- Elephants and alligators of pronoun resolution:

(drawings by Robbert Prins)

Source: Petra Hendriks, http://www.let.rug.nl/hendriks/vici.htm.

Elephants and Optimality?

Possible correct interpretations of the title:

- Use of tools in explaining cognitive phenomena: should be "optimal", and not "too heavy", hitting too strong.
- Optimality Theory: hit the worst candidate.
- Elephants and alligators of pronoun resolution:

(drawings by Robbert Prins)

Source: Petra Hendriks, http://www.let.rug.nl/hendriks/vici.htm.

Overview

- Language acquisition again
- Simulated Annealing for OT
- A model for pronoun resolution
 - Simulation results

Language acquisition: What do children miss?

- P&P: parameter setting / constraint ranking?
- Principles / constraints?
- A (major) component of the "language device"?
- Performance: working memory, computing power?

Pronoun resolution problem: data

The elephant is hitting him. The elephant is hitting himself. Source: Petra Hendriks, http://www.let.rug.nl/hendriks/vici.htm.

- "Here you see an elephant and an alligator. Does the elephant hit him?"
- "What does the elephant do?"
- Children of age 4-6 are better at producing pronouns (and reflexives) than interpreting them. Interpretation performance: 50-80 %.

Pronoun interpretation problem: possible explanations

Government and Binding (GB):

- Principle A: anaphors must be bound within their domain.
- Principle B: pronouns must not be bound within their domain.
- Principle C: R-expressions must not be bound.
- Chien and Wexler: children do not have Principle B yet, due to apparent violations (*He_i looks like him_i*).
- Reinhart: insufficient working memory in children to perform necessary computations.
- Hendriks and Spenader: Principle A + bidirectional OT (Principle B not necessary). Children do not have bi-OT before fully developed Theory of Mind.

Overview

- Language acquisition again
- Simulated Annealing for OT
- A model for pronoun resolution
 - Simulation results

Simulated Annealing for OT (SA-OT)

Optimality Theory grammar competence model

grammatical form = "" (globally) optimal candidate

performance model produced forms = globally or locally optimal candidates

implementation

Simulated Annealing for OT – general idea

- Neighborhood structure on the candidate set.
- Landscape's vertical dimension = harmony; random walk.
- If neighbor more optimal: move.
- If less optimal: move in the beginning, don't move later.
- Neighborhood structure \rightarrow local optima.
- System stuck in local optima: *performance* errors.
- Precision depends on # of iterations.

(Cf. Biro, in: Proc. CLIN 2004.)

Optimality Theory and Harmony Grammar

Objective function to be optimized:

$$H(w) = C_n(w) \cdot q^n + \ldots + C_i(w) \cdot q^i + \ldots + C_1(w) \cdot q + C_0(w)$$

- Harmony Grammar: real valued q.
- Optimality Theory: $q = \omega$ or $q \to +\infty$ (strict domination).
- Harmony Grammar: with more iterations, precision converges to 1.
- Optimality Theory: not always!

Overview

- Language acquisition again
- Simulated Annealing for OT
- A model for pronoun resolution
 - Simulation results

A model for pronoun resolution

"Does the elephant hit him?"

- Candidate set 1: *him* refers to {(alligator), (elephant), Ø, (alligator&elephant)}.
- Candidate set 2 (with insertion): {(alligator), (elephant), Ø, (alligator&elephant)} × {0, 1, 2, ...}.
- Neighborhood structure: add/remove one object from the reference set.
- Constraints:
 - PROKNOWN: Reference set must include object from context.
 - AGRNUMBER: reference set cardinality = 1.
 - NO3RD: # of inserted elements.
 - PRINCIPLEB: *elephant* not in reference set.
- Hierarchy: $\text{Pro} \gg \text{AgrNumber} \gg \text{No3rd} \gg \text{PrincipleB}.$

A model for pronoun resolution

		Pro	AGRNUMBER	No3rd	PrincipleB
	0	1	1	0	0
\sim	е	0	0	0	1
	ea	0	1	0	1
ß	а	0	0	0	0
	0 +1	1	0	1	0
	e +1	0	1	1	1
	ea +1	0	1	1	1
	a +1	0	1	1	0
	0 + <i>k</i>	1	1	k	0
	e+k	0	1	k	1
	ea +k	0	1	k	1
	a + <i>k</i>	0	1	k	0

From Harmony Grammar to Optimality Theory

$Candidate Set T (no insertion), R_{max} = 0, r_{step} = 0.11$				
q	precision		q	precision
OT	0.500		1.4	0.790 ± 0.004
30	0.499 ± 0.008		1.3	0.847 ± 0.001
20	0.500 ± 0.012		1.2	0.911 ± 0.002
10	0.499 ± 0.003		1.15	0.945 ± 0.003
5	0.511 ± 0.001		1.10	0.978 ± 0.001
3	0.550 ± 0.005		1.08	0.986 ± 0.001
2.5	0.580 ± 0.003		1.06	0.994 ± 0.001
2.0	0.633 ± 0.003		1.05	0.997 ± 0.001
1.8	0.666 ± 0.003		1.04	0.9985 ± 0.0003
1.7	0.687 ± 0.007		1.03	0.9991 ± 0.0005
1.6	0.716 ± 0.006		1.02	0.99977 ± 0.00015
1.5	$\textbf{0.749} \pm \textbf{0.008}$		1.01	0.99997 ± 0.00006

Candidate set 1 (no insertion), $K_{max} = 5$, $T_{step} = 0.1$.

Tuning the parameters in Optimality Theory

Candidate set 2 (with insertion), $T_{step} = 0.1$.

<i>K_{max}</i>	precision	
1	0.575 ± 0.003	
3	0.616 ± 0.004	
5	0.649 ± 0.003	
8	0.684 ± 0.002	
10	0.700 ± 0.007	
30	0.798 ± 0.003	
50	0.839 ± 0.003	(NB: More explanation in Bíró (2006).)
80	0.871 ± 0.004	
100	0.881 ± 0.003	
300	0.929 ± 0.003	
500	0.945 ± 0.002	
800	0.954 ± 0.002	
1000	0.961 ± 0.005	
2000	0.972 ± 0.002	

From Harmony Grammar to Optimality Theory

~	$Candidate out 2$ (with insertion), $r_{max} = 0$, $r_{step} = 0$.						
	q	precision		q	precision		
	OT	0.649 ± 0.003		1.40	0.761 ± 0.006		
	30	0.659 ± 0.003		1.30	0.804 ± 0.005		
	20	0.664 ± 0.008		1.20	0.872 ± 0.003		
	10	0.647 ± 0.002		1.15	0.910 ± 0.003		
	5	0.641 ± 0.002		1.10	0.949 ± 0.002		
	3	0.634 ± 0.002		1.08	0.963 ± 0.001		
	2.5	0.632 ± 0.004		1.06	0.978 ± 0.002		
	2.0	0.648 ± 0.003		1.05	0.983 ± 0.001		
	1.8	0.671 ± 0.006		1.04	0.990 ± 0.002		
	1.7	0.680 ± 0.006		1.03	0.993 ± 0.0004		
	1.6	0.704 ± 0.001		1.02	0.9967 ± 0.0006		
	1.5	0.725 ± 0.005		1.01	0.9989 ± 0.0004		

Summary

Simulated Annealing with Optimality Theory/Harmony Grammar provides a framework to account for delay in the pronoun interpretation problem. Adults make less "performance errors" than children:

- Learning social cognition, etc.: enlarge the candidate set with candidates including not present elements. (*Godot-effect*: crucial role played by "invisible" candidates.)
- More computational power: use of higher *K*_{max}.
- Learn to use a more flexible grammar for semantic-pragmatic issues: no more strict domination, reduce *q*.
- NB: I'm not arguing against previous explanations! Future work to compare them.

Thank you for your attention!

Tamás Biró http://www.let.rug.nl/birot, birot@nytud.hu