Remarks on Assignment 4
Language and Computation, spring 201

Tamas Bird

1 Understand the distinction between the type
of a grammar and the type of a language

1.1 On grammar types and language types

The former refers to the form of the rules in the grammar, whereas the later to
the grammars that can possibly generate this language.

A grammar (N, X, S, P) belongs to class type-i, if its production rules in P
are conform to the rule skeleton(s) of that class. A language L C ¥* belongs
to class type-i, if it can be generated by a grammar of the corresponding class.
However, a language can often be generated by several grammars.

First, observe that if a production rule p matches the rule skeleton of type-i,
then it will also match the rule skeletons of type-j for all j < i.! Therefore, if
a grammar belongs to type-i, then it will also belong to type-j for j < 7.2 As
it is very easy to give examples of grammars that belong to type-j, but not to
type-i for j < i, we conclude that the class of type-(i + 1) grammars is a proper
subset of the class of type-i grammars.

It also follows that the class of type-(i + 1) languages is a subset of the
class of type-i languages. Refer to the lecture (03/25, slide 8) for examples
demonstrating that the type-(i + 1) language class is a proper subset of the
type-¢ language class.

Focusing on the current assignment, observe that a grammar with (non-
regular) context-free rules may still generate a regular language. For instance,
the context free grammar with rules S — S S and S — a will generate the
language a+.> However, the same language can also be generated by the weakly
equivalent regular grammar S — a S and S — a. In sum, the regular language
a+ can be generated by regular grammars (hence, it is a regular language), but
also by “inherently” context-free grammars that are not regular.

LWith the exception of the use of € in rules. Refer to Fig. 16.2 (section 16.1) of the textbook.

2All regular grammars are context-free grammars, and all context-free grammars are
context-sensitive grammars. In less precise speech, however, “grammar G is context-free”
might also mean “context-free, but not regular”. Likewise for “is context-sensitive” denoting
“context-sensitive, but not context-free”; and likewise for formal languages.

3Here is a less self-evident example: (1) S — X Ay B X, (2) A — A A, (3) B —» BB,
(4) A = a,(5) B = b, (6) X — =z, which will generate the regular language xa+yb+x.



1.2 The language of mathematics

The question in the assignment pertained to the class of the language generated,
and not to the class of the grammar. True, the grammar rules on p. 1 of the
assignment did not match the “rule skeleton” of a regular grammar, but the
rule skeleton of a context-free grammar. Therefore, most of the rules are to be
“blamed” for this grammar to be context-free, and not regular.

And yet, if the grammar did not have parentheses, that is, if we removed
the rule E — ( E), then the language generated would be a regular language.
Here is a regular expression describing the language without parentheses (while
I leave it to you to formulate a corresponding regular grammar, as well as a
corresponding finite-state automaton®):

/[0-91+ ([+|-|*|/]1 [0-9]1+)* [=|<|>] [0-91+ ([+|-|*|/1 [0-9]1+)*/

The language generated by the grammar proposed for math is not regular
since the rule E — ( F ) requires as many opening as closing parentheses, and,
importantly, this number can be unlimited.® This is the only rule to be “blamed”
for the language generated not being regular. One can draw parallels between
using parentheses here and recursive center embedding in syntax (JM 16.2.2).

1.3 A formal proof

Informally speaking, we need an unlimited register to check the parentheses.
Imagine the following procedure: setting the value of the register initially to
zero, we read the string left to right, increase its value by 1 for each opening
parenthesis, and decrease its value by 1 for each closing parenthesis. The string is
well-formed for the parentheses only if the value of this register is never negative,
and is exactly 0 after having read the left-hand side of the string, as well as
after having read the whole string. Such an unlimited register is beyond finite-
state technology, and is a typical example of the stack that characterizes the
pushdown automata (PDA), the automata theoretic construction corresponding
to context-free grammars.

However this is not yet a formal proof, which can only be provided by the
Pumping Lemma. The Pumping Lemma has several formulations, but below
I will refer to the one provided by Jurafsky and Martin, section 16.2.1:

Pumping Lemma: Let L be an infinite regular language. Then, there
are strings x, y and z such that y # €, and xy™z € L for all n > 0.

First observe that the strings x, y and z are provided by the Pumping Lemma
and the language L, and it is not up to you to decide what “to pump”.% Second,
x and z might very well be the empty string. Third, although the truth value

4Hint: use separate non-terminals / states for the left-hand side and the right-hand side.

5With a limited number of parentheses, technically, the language would be regular.

6If you could choose what to pump, for instance, the relation symbol, you would be able
to produce invalid strings, even in the case of the regular language without the parentheses.



of a mathematical formula might change after “pumping”, this fact does not
influence the syntactic validity of the string (see below).

Here is the sketch of a proof by contradiction that closely follows the example
appearing in your textbook (section 16.2.1, as well as exercise 16.3):

Let us assume the opposite of what we aim at demonstrating: that the lan-
guage L generated by our grammar is regular. Moreover, consider the following
language: L' = {(¥1)! = (™2)"|k,l,m,n > 0}. Language L’ is regular, as it is
described by the following regular expression: /(+ 1 )+ = (+ 2 )+/. Assum-
ing that L is also regular, the intersection of L and L’ must be another regular
language, by the closure properties of the regular languages. Their intersection
is the following set: L” = {(*1)* = (™2)™|k,m > 0}: strings that follow the
regular expression pattern of L', but also have the correct number of parentheses
(as required by the single rule involving parentheses in L).

Since L” is an infinite language, we can apply the Pumping Lemma: There
are strings =, y and z such that y is not the empty string and xy™z belongs to
L” for all n > 0. Consequently (take n=1), there is a string in L” that can be
decomposed into these z, y and z. What should this string be, and what should
its non-empty substring y be? Observe that each element of L” contains exactly
one = character, one 1 character and one 2 character; if y contained any of these
characters, then y could not be pumped. It follows that either y only contains
opening parentheses, or it only contains closing parentheses. Containing both
(without containing other characters) is not an option, because opening and
closing parentheses are not adjacent in L. But then, by pumping y, we change
the number of opening parentheses (if y contains them), or the number of closing
parentheses (if y only contains them), and so we produce strings that do not
satisfy the symmetry of opening and closing parentheses that characterizes the
strings in L”. Hence, the pumping lemma does not hold, which means L” cannot
be regular, whence L cannot be regular, either. Q.e.d. O

A final remark: Some proved that L has a non-regular subset. From this fact
it does not follow, however, that L is non-regular. For instance, {a"|n is prime}
is a highly non-regular subset of the regular language {a™|n > 1}.

2 Understand the difference between “well-formed
syntactically” and “true semantically”

The sentence “Connecticut is the largest state in the US” is a syntactically well-
formed sentence, and must be accepted by a syntactic parser, independently of
whether it is true or false. In fact, a semantic evaluator can determine its truth
value only after it has been syntactically analyzed. Similarly, a syntactic parser
for mathematics must accept the string ”"243=7", and it is a non-syntactic
question whether the statement expressed by this string is true or false.

The borderline between syntax and semantics is not always clear, however.
For instance, should a syntactic parser accept the sentence “I ate soup with a
friend and a spoon”? Purely on syntactic grounds, grammar can coordinate



(combine) the noun phrases “a friend” and “a spoon” within a prepositional
phrase. However, more refined approaches to syntax will be able to block the
coordination of very different nouns, serving very different roles in the sentence.
Clever syntax may take over some of the systematic phenomena in semantics.
Similarly, we can exclude division by zero from the syntax of mathematics
by prohibiting the substring /0.” But what about 1/(3-(6/2))=1? In order to
avoid division by zero in general, we have to refer to semantics, and we cannot
do so purely on syntactic grounds. Hence, I am not very convinced that I would
like to exclude strings such as 1/0>0 from the syntax of mathematics, either.

3 Understand the difference between “defining
a language” and “describing a language”

You have all correctly understood that a string such as 1+1%2=9 is ambiguous by
the grammar provided: the left-hand side has two parses, [1+1]*2 and 1+[1%2],
corresponding to two different values. It is only of secondary importance that
in both cases the truth value of the entire “sentence” is false.

However, this expression is not ambiguous in the ”language of mathematics”.
Anyone having passed the first few grades of primary school will know that the
value of 1+1%2 is 3, and not 4. (The so-called “Polish notation” is a different
language, and not the standard “language of mathematics”.) Therefore, I have
asked you to refine the original grammar so that it will match the “language of
mathematics”. That is a different task from re-designing the language.

Indeed, these two tasks reflect two different world views. The scholar in the
humanities wishes to describe a phenomenon: given a language, let us find the
grammar that best describes it. For instance, the grammar should not display
more ambiguities than the amount of ambiguity in the language being described.
The engineer, however, takes a more prescriptive approach: let us re-design the
language in the simplest way so that it will not display any unwanted ambiguity.
For instance, by enforcing parentheses around each operation. Then, 1+1*2>0
will not be a legitimate string anymore, but it should be either (1+1)*2>0, or
1+(1*2)>0. Similarly, 10-2+3>0 will not be accepted, only (10-2)+3>0 and
10-(2+3) >0. But 1+1+1>0 will not be accepted, either.

This second approach works well if you are defining a novel standard, or
a programming language, or something similar. However, most often such is
not the case. Your task is to describe or process a given language, let it be a
natural language or the “language of mathematics”. Nobody will buy a machine
translation software that allows users to only enter certain sentences, those that
are easy to parse. Similarly, the language of mathematics developed in earlier
centuries is sufficiently unambiguous, and therefore we should not re-design it.
Rather, your task was to refine the grammar so that it should accept the string
1+1+1>0, and unambiguously parse 1+1*2>0 or 10-2+3>0.

"The language “.* /0 .*” is regular. Therefore its complement is also regular. So the
intersection of its complement with a context free language results in a context free language.



