
Language and Computation
LING 227 01 / 627 01 / PSYC 327 01
Minimal Edit Distance is a distance metric
Remarks on Assignment #, Problem 3

1 The problem

Your assignment (http://birot.hu/courses/2014-LC/LC-assignment-2.pdf)
was to demonstrate that Minimal Edit Distance (or, shortly, Edit Distance, also
known as Levenshtein Distance) is a distance metric, which satisfies the follow-
ing conditions:

1. D(a, b) ≥ 0 (non-negativity)

2. D(a, b) = D(b, a) (symmetry)

3. D(a, b) = 0 if and only if a = b (coincidence axiom)

4. D(a, b) +D(b, c) ≥ D(a, c) (subadditivity, or triangle inequality)

Please note that the conjunction “if and only if” in the coincidence axiom
(a.k.a. identity of indiscernibles) subsumes two statements, which are most
often proven separately: (1) if a = b, then D(a, b) = 0, and (2) if D(a, b) = 0,
then a = b.

2 Introductory remarks

2.1 Goals of the assignment

The goal of this assignment was manifold: to have you practice the concept of
Minimal Edit Distance and its algorithmic computation, to train your formal
and mathematical skills in general, as well as to show you how a certain topic
can be tackled from different angles, on different levels. These were the reasons
why the text of the assignment included the sentence “in order to receive the
maximum amount of points, you should base at least some parts of the proof
on the algorithm: explain why the algorithm returns a value that satisfies the
criteria of a distance metric.”

From a formal perspective, a perfect proof based on the most formal math-
ematical definitions of the concepts is the best possible solution; but not from a
pedagogical perspective. This is why I valued higher the solutions demonstrat-
ing that their authors are able to use a broader scope of approaches.

The motivation behind this current note is to help you reach these goals.

1

2.2 On the “reasonable conditions”

Most of the students correctly understood that the remark on “reasonable condi-
tions” referred to requirements such as the costs should be positive, symmetric,
etc., as discussed in a moment, without which the above criteria for being a
distance metric are not (necessarily/always) satisfied. Some of you also demon-
strated that these conditions are not only sufficient, but also necessary for MED
to be a distance metric. In any case, one should always start a discussion by
explicitly enumerating the assumptions to be deployed in the proofs: those of
you who did not do so received less points for a less clear train-of-thought.

As always in mathematics, one should try to provide general results: con-
ditions and statements should be made as broad as possible, so that what you
prove can be employed in many different conditions. Many of you restricted
themselves to unity insertion costs, deletion costs and substitution costs: even
though these are indeed “default values”, and the standard values used to il-
lustrate the method, they are by far not the only cost values used in various
applications. Therefore, I appreciated more the solutions that did not rely on
such an unnecessarily restricting assumption.

Moreover, some people—probably by misunderstanding a remark in the
textbook—supposed unity costs for insertion and deletion, and a double cost
for substitution. Such a case (and even the case when substitution costs are
higher than the sum of the insertion and deletion costs) are theoretically pos-
sible, allowed by the proofs below, but impractical: it practically eliminates
the substitution operation, because the latter can be replaced by the not more
expensive series of a deletion and an insertion. Excluding substitution may be
useful in some applications, but less useful in other ones: therefore, our proofs
below do not make any assumption on how the summed up costs of an insertion
and a deletion relate to the substitution cost.

As a side note: our approach does not include a transposition operation
(metathesis), although it would be also useful. In theory, re-arranging neigh-
boring characters can be replaced by the deletion of one of the two letters, fol-
lowed by an insertion of the same letter at a different place. In fact, metathesis
is a frequent operation in the grammars (morphologies) of languages, in their
history, but also in typing errors. In turn, many systems could be improved
if the edit distance metric were enriched by this operation—which makes only
sense if the cost of metathesis is less than the sum of an insertion and a deletion.
Moreover, cheap transposition could be restricted to adjacent or near characters,
distinguishing it from costly deletion and remote re-insertion.

Finally, as mentioned in class and as featured on the pseudo-code of the
MED algorithm, different characters may have different insertion, deletion and
substitution costs. For example, an old-day copyist might very simply have
substituted the letter O for the digit 0, and the deletion of certain sounds are
much more likely in the history of languages than the deletion of other sounds.
It follows that our argumentation below should also allow for this possibility.

2

2.3 The way to the solution is not a solution

Lecturers and scholarly articles often introduce concepts, proofs, algorithms,
etc., by guiding their audience through a train of thought, pretending as if the
original discovery were made via this stream. Believe me, in most cases it was
not! However, this kind of rhetoric might make you believe that you also should
or could present your results the way they originally emerged.

After you have solved a problem, you should take a step back—ideally, wait
a day or two—and only then write your results down. When you commit your
results to writing, you should most probably reorganize it, and present it using
a different logic. To some extent, this is common sense, and yet, a surprising
fact was the proliferation of proofs by contradiction among your solutions.

People (including myself) tend to prove mathematical propositions by as-
suming the opposite. This phenomenon might be due to the way we think: we
can better understand what a proposition means if we toy with the opposite
idea; if the opposite turns out to be impossible, we better understand why the
current proposition must be true. However, proofs by contradiction are very
often not very elegant, and sometimes even vague (at least, it turned out to be
so among your solutions). Therefore, whenever you come up with a proof by
contradiction, you should try to revise it: can you not reverse the argument,
and present a more elegant, more convincing and clearer positive proof?

3 Assumptions

Let ci(x), cd(x) and cs(x, y) be the insertion cost of character x, the deletion cost
of character x, and the substitution cost of replacing character x with character
y, respectively. Note that (in opposition to what some of you wrote) x and y
are always characters (elements of Σ), and never strings (elements of Σ∗; hence,
not even the empty string).

We will make use of the following assumptions:

1. For all x ∈ Σ, ci(x) > 0 and cd(x) > 0. (The cost of either inserting or
deleting a character is positive.)

2. For all x and y ∈ Σ, cs(x, y) ≥ 0. (Substitution costs are non-negative.)

3. For all x and y ∈ Σ, cs(x, y) = 0 if and only if x = y. (Substitution costs
are positive, with the exception of replacing a character with itself. The
cost of the latter operation must be null.)

4. For all x ∈ Σ, ci(x) = cd(x). (The cost of inserting a character is equal to
the cost of deleting it.)

Note that we do not assume that all insertion costs (deletion costs) are equal.
We do not assume either that cs(x, y) ≤ cd(x) + ci(y): if this latter inequality
does not hold, then although it is still possible to employ the substitution op-
eration, it will not be used by minimal-cost alignments.

3

You would come up with these assumptions not before, but while thinking
about the proofs. But after you would solve the problem, and before you start
writing your solutions down, you should review them.

The clarity and convincing power of your proofs will highly benefit from
listing your assumptions before you enter the details of the proofs. Thus, the
conditions of your general result (“minimal edit distance is a distance metric”)
becomes clearer to the reader (and to yourself). Unfortunately, many of you only
mentioned these assumptions (explicitly, or, even worse, implicitly) at random
points of the proofs, obscuring hereby the validity of your results.

4 Informal proofs

Jurafsky and Martin introduces Minimal Edit Distance informally using two
different perspectives. Let me refer to the first one as the alignment perspective,
and to the second one as the transformation path perspective. The two are
equivalent in practice, but not in theory, as we shall soon see it.

The first, two-level-only approach aligns the two strings. Characters and
empty strings in the first string are made correspond to characters and empty
strings in the second string (here an asterisk stands for the empty string):

Each correspondence has a cost: cs(x, y) if the upper string contains x and
the lower string contains y, ci(x) if the upper string contains the empty string
and the lower string contains x, and finally cd(x) if the upper string contains x
and the lower string contains the empty string in this correspondence. (Empty
string to empty string correspondences will not be allowed or will be assigned a
zero cost by definition.)

It is this alignment approach which is taken by the Minimal Edit Distance
Algorithm. It does not allow for a character to be inserted and then deleted
while we “go” from the first string to the second string. We automatically
assume that such an operation pair is unnecessary, does not improve the overall
costs, and so we even do not consider it.

A different approach to Minimal Edit Distance is taken by the formal def-
inition I provided as the appendix of the assignment. It considers a series of
elementary transformations (insertion, deletion and substitution), each with a
cost. These operations define a “path” of gradually changing strings. Minimal
Edit Distance is the sum of the costs of these single edit operations not per-
formed in parallel but in a sequence, along the path connecting the upper string
to the lower string:

4

When discussing the informal proofs below, it might be more useful to have
this second approach in mind. Still, you can change the word “path” to the
word “alignment” below, if you prefer the first approach.

4.1 Non-negativity: D(x, y) ≥ 0

In order to get from x to y, we have to perform zero, one or more operations.
Performing no operation has a zero cost. From the assumptions above it follows
that any operation incurs a non-negative cost. Hence, a single operation path
from x to y has a non-negative cost. If a path involves more operations, then its
cost is the sum of a number of non-negative costs, which is again a non-negative
number. The minimal edit distance path is therefore chosen from a set of paths
each with non-negative cost, and so it will also have a non-negative cost.

4.2 Symmetry: D(x, y) = D(y, x)

First, we show that by the assumptions made above, reversing a path (that is,
reversing the upper and the lower string) does not alter the cost of that specific
path (alignment). Indeed, when we reverse the path (when we reverse the upper
and the lower string), insertions become deletions, deletions become insertions,
and x-to-y substitutions become y-to-x substitutions. If ci(x) = cd(x) and
cs(x, y) = cs(y, x) for all x and y, then the same costs are summed up along
both paths, even if in the opposite order.

Second, let us consider the minimal edit path (alignment) from x to y. Re-
versing this path (alignment), we obtain a path (alignment) from y to x that
has the same cost. It remains to show that this is the minimum edit distance
path (alignment) from y to x. We can show this by contradiction: if there were
a lesser edit distance path from y to x, then the reverse of this path would be
a path from x to y shorter than the one we have just supposed to be minimal.

We can rephrase this proof in a more elegant way, without a proof by con-
tradiction. Let p be the minimal edit distance path (alignment) from x to y,
and pr the reverse path (alignment) from y to x. The fact that p is minimal
means that for any path (alignment) p′ from x to y, the cost of p′ is greater than
or equal to the cost of p. Now we show that the cost of pr is minimal among
the costs of the paths from y to x. Let q be some path (alignment) from y to
x. Then, the reverse of q is a path (alignment) from x to y, and therefore its
cost is greater than or equal to the cost of p. Since the costs of p and of pr are

5

equal, and the costs of r and of its reverse are also equal, it follows that pr is
the minimal edit alignment between from y to x.

As D(x, y) is the cost of p, and D(y, x) is the cost of pr, it follows that
D(x, y) = D(y, x).

4.3 Coincidence axiom: D(x, y) = 0 iff x = y

First, we show that if x = y, then D(x, y) = 0. Namely, if x = y, then no
operation is needed to get from x to y, and so there is a path (alignment) with
zero cost: D(x, y) is at most 0. But by non-negativity, the distance cannot be
less than zero. Consequently, D(x, y) = 0.

Second, suppose that D(x, y) = 0, which means that there is a zero-cost
path (alignment) from x to y. All operations have non-negative costs by the
assumptions above, from which it follow that the minimal edit distance path
(alignment) from x to y cannot contain positive cost operations. The minimal
edit distance path (alignment) either contains no operation at all, or only con-
tains zero-cost operations. In the former case, x = y. In the latter case, observe
that the assumptions allow for one type of zero-cost operation only: substitution
to itself. Such operations make no change to the string; hence, x = y again.

4.4 Triangle inequality: D(x, y) +D(y, x) ≥ D(x, z)

Let p1 be the minimal edit distance path from x to y, and let p2 be the minimal
edit distance path from y to z. Then, The path p1 + p2 (not defined, but
you probably get the point) is a path that transforms x to z via y, and has a
cost of D(x, y) + D(y, x). Therefore, there exists a path from x to z with cost
D(x, y) +D(y, x). The cost D(x, z) of the minimal edit distance path from x to
z cannot be greater than the cost of the path we have found from x to z via y:

D(x, z) ≤ D(x, y) +D(y, x)

Note that the idea of “going from x to z via y” works well in the second,
“transformational path-based” approach, but does not necessarily work with
the two-level “alignment perspective”. This second approach will not consider
alignments that include the insertion and the deletion of a character in y, if this
character does not occur in either x or z.

6

5 Algorithm-based proofs

To refresh our memory, here is the algorithm provided by Jurafsky and Martin:

5.1 Non-negativity: D(x, y) ≥ 0

For a given (target, source) string pair, the pseudo-code returns a value that is
calculated in the following way:

• distance[0,0] is initialized with 0, a non-negative value.

• All other elements in the distance matrix are computed by summing up
non-negative numbers, since

– by the assumptions above, all costs are non-negative, and

– the minimum of three non-negative numbers is also non-negative.

• An element of this matrix (namely, its upper right cell) is returned.

To be more precise, we show by induction that each cell of the dynamic
programming table (the distance matrix) is non-negative. If will follow that its
(n,m) cell, the value returned by the algorithm, is also non-negative.

First, the line distance [0,0]=0 of the algorithm guarantees that distance[0, 0]
is non-negative. Then, by induction we show that distance[i, 0] is non-negative
for all i ≤ n: this fact follows from the pseudo-code line filling these cells and
by the assumption that ci(x) > 0. Similarly, distance[0, j] is non-negative for
all j ≤ m.

Finally, we show by double strong induction that distance[i, j] is non-
negative for all i ≤ n and j ≤ m. Suppose that for some 1 ≤ i ≤ n and
for some 1 ≤ j ≤ m we already know that distance[i−1, j−1], distance[i−1, j]
and distance[i, j − 1] are all non-negative. Remember also the non-negativity

7

assumptions on the three kinds of operations costs. It follows that each of
the three arguments of Min in the penultimate line of the pseudo-code is non-
negative. Consequently, their minimum is also non-negative, and this is the
value assigned to distance[i, j].

Therefore, the upper right cell of the dynamic programming table, that is
distance[n, m], the value returned by the algorithm, will also be non-negative.

5.2 Symmetry: D(x, y) = D(y, x)

Imagine target and source are reversed in the algorithm. D(x, y) is the output
of the original run, and D(y, x) is the output of the new run. How does this
new run of the algorithm relate to the original run?

First, observe that n and m will be assigned reversed values in the new run.
Then, the zeroth column will now be initialized as earlier the zeroth row, and
vice-versa. Subsequently, the algorithm will build up a table that is the “mirror”
of the original table, by mirroring it around its diagonal: the new distance[i,j]
will be equal to distance[j,i] of the original. In particular, the new distance[n,m]
will be equal to the original distance[m,n].

However, as mentioned above, n and m will be assigned the reversed values,
compared to the original run. Consequently, the output value of the new run,
distance[n,m], will be equal to distance[n,m] in the original run, which is the
output of the original run. Hence, D(x, y), as computed by the original run,
equals D(y, x), as computed by the new run.

5.3 Coincidence axiom (1): if x = y, then D(x, y) = 0

If the two arguments of the algorithm, target and source are the same, then
n = m. Moreover, target i =sourcei. By the assumptions on substitution costs,
cs(sourcei,target i) = 0.

Now, we show by induction that running the algorithm with equal input
arguments will result in distance[i,i]= 0 for all i. Indeed, this proposition is true
for i = 0 due to the initialization of distance[0,0] as 0. Moreover, if it also applies
to distance[i−1,i−1], then distance[i−1,i−1]+cs(sourcei−1,target i−1) = 0. We
have earlier shown that all cells in the distance matrix are non-negative, whereas
insertion and deletion costs are positive by the assumptions. Therefore, when
distance[i,i] is calculated in the penultimate line of the code, it will be the
minimum of zero and two positive numbers, that is, it will be equal to 0.

It follows that the return value, distance[n,m = n], will also be 0.

8

5.4 Coincidence axiom (2): if D(x, y) = 0, then x = y

First observe that if i 6= j, then distance[i,j] cannot be zero. To understand
why, recall the following dynamic programming chart from your textbook:

The “backtrace” from distance[i,j] to distance[0,0], which we obtain by fol-
lowing the small arrows, will show the minimal edit operations needed to align
the first i characters of the first string to the first j characters of the second
string. If i 6= j, then the backtrace will contain at least one horizontal or ver-
tical arrow, corresponding to at least one insertion or deletion, which have by
assumption a positive cost. Therefore, the value of distance[i,j], which is the
sum of the costs associated with these arrows, will always be positive.

Subsequently, suppose that the algorithm has returned D(x, y) = 0 for some
input arguments x and y. That is, distance[n,m]= 0. Therefore, n must be
equal to m: the two input strings are of equal length.

The value of distance[n,m] was calculated as the minimum of two positive
values (the positive distance[n − 1,m] plus some positive insertion cost, and
the positive distance[n,m − 1] plus some positive deletion cost), as well as of
distance[n − 1,m − 1] plus some substitution cost. This third value must be
zero for their minimum to be zero. Given the assumptions on substitution
costs, this third value can only be zero if distance[n − 1,m − 1]= 0, and also
targetn−1 =sourcem−1.

Similarly, we can demonstrate by backward induction that all the elements
in the diagonal distance[i,i]= 0, and target i =sourcei. But if all characters of
the two strings are the same, then the two strings are the same: x = y

5.5 Triangle inequality: D(x, y) +D(y, x) ≥ D(x, z)

The train of thought presented under the “informal” and “mathematical” ap-
proaches both rely on a combination of the “path” from x to y with the “path”
from y to z. However, this combination is not always considered by the Minimal
Edit Distance Algorithm, as mentioned at the end of subsection 4.4. Therefore,
the idea used there cannot be adopted here.

If, nevertheless, you can demonstrate the triangle inequality by referring to
the algorithm, please feel free to let me know.

9

6 Mathematical proofs

First, we have to demonstrate that if a and b ∈ Σ∗, then there exists at least
one alignment from a to b. Indeed, we can construct such a (finite) alignment:
let us first gradually delete the characters in a, and after arriving to the empty
string, let us gradually insert the characters of b.

Subsequently, we have to demonstrate that there exists at least one align-
ment from a to b whose cost is D(a, b).1 This fact follows from Σ being finite,
thanks to which {ci(x)|x ∈ Σ} ∪ {cd(x)|x ∈ Σ} ∪ {cs(x, y)|x, y ∈ Σ} ⊂ R+

0 ,
(the set of elementary operation costs) is also finite. A possible alignment cost
is a linear combination of the elementary operation costs, with non-negative
integer coefficients: the cost of inserting x n times, plus the cost of deleting x
m times, plus the cost of inserting y k times, plus the cost of substituting x
for y l times, etc. It follows that the set of possible alignment costs is a well-
ordered subset of R+

0 . The distance D(x, y) is defined as the minimum of the set
{C(x0, x1, . . . , xn)|(x0, x1, . . . , xn) is an alignment from a to b}, which is a subset
of the set of possible alignment costs, and therefore it contains its least ele-
ment. The alignment yielding this least element will be called the minimum
edit distance alignment.

6.1 Non-negativity: D(x, y) ≥ 0

Definitions 1 to 3 of the appendix guarantee Di, Dd and Ds to take non-negative
values. Definition 4 guarantees that D(a, b) is non-negative, iff a and b are
neighbors. By definition 5, the cost of any alignment is the sum of zero or
more non-negative numbers, which is again a non-negative number. Finally,
definition 6 introduces the minimal edit distance of two strings as the minimum
of non-negative numbers, which must be again a non-negative number.

6.2 Symmetry: D(x, y) = D(y, x)

First, one can easily demonstrate using definitions 1 and 2 that if a is an
insertion-neighbor of b, then b is a deletion-neighbor of a. Given the assumptions
on insertion and deletion costs, Di(a, b) = Dd(b, a). Vice-versa, if a is a deletion-
neighbor of b, then b is an insertion-neighbor of a, and Dd(a, b) = Di(b, a).
Moreover, if a is a substitution-neighbor of b, then b is also a substitution-
neighbor of a. Given the symmetry assumption on the substitution costs,
Ds(a, b) = Ds(b, a).

1Is this not self-evident? Suppose that in geometry we define the distance of two shapes
as the (Eucledian) distance of their two closest points. Formally, let the distance of A and B
be the greatest lower bound of the (Eucledian) distances d(a, b) for all a ∈ A and b ∈ B:
D(A,B) = min{d(a, b)|a ∈ A, b ∈ B}. Is it true that in such case there will always be some
a∗ ∈ A and some b∗ ∈ B such that D(A,B) = d(a∗, b∗)? No, it is not. Imagine for instance
two open half-planes, not including the straight line separating them. Two points of the two
half-planes can have any small positive distance. The minimum of such distances will be zero,
and so the distance of the two half-planes must be zero. And yet, you cannot finds points in
the two half-planes so that their distance be precisely zero.

10

Consequently, by definition 4, if a is a neighbor of b, then b is a neighbor of
a. Moreover, D(a, b) = D(b, a).

Let (x0, x1, . . . , xn) be an alignment from a to b. Then it follow from
the previous paragraph that (xn, . . . , x1, x0) is an alignment from b to a, and
C(x0, x1, . . . , xn) = C(xn, . . . , x1, x0) (by the arithmetic properties of addition).
If (x0, x1, . . . , xn) is not an alignment from a to b, then (xn, . . . , x1, x0) is not
an alignment from b to a.

Consequently, the set of alignments from y to x can be obtained by con-
sidering all the alignments from x to y and by reversing them. The set of the
costs of the alignments from x to y is the same set as the set of the costs of the
alignments from y to x. Consequently, D(y, x) is calculated as the minimum
of the same set of costs, as the set of costs that is used to calculate D(x, y).
Hence, D(x, y) = D(y, x).

6.3 Coincidence axiom: if x = y, then D(x, y) = 0

If x = y, then (x) is an alignment from x to y, and its cost is zero. The cost of the
minimal edit alignment cannot be greater than the cost of the alignment we have
thus constructed: D(x, y) ≤ C(x) = 0. Yet, by non-negativity, D(x, y) ≥ 0.
Therefore, D(x, y) = 0.

6.4 Coincidence axiom: if D(x, y) = 0, then x = y

As mentioned above, D(x, y) is not only the minimum of the alignment costs,
but it is also the cost of some alignment. Due to non-negativity and definition 5,
the cost of this alignment can only be zero if

• either the sum in definition 5 has no addend, because the alignment con-
sists of a single element (x0),

• or all the addends in the summation are zero.

In the former case, by definition 5, x = x0 and y = x0, and hence, a = b.
In the latter case, D(xi, xi+1) = 0 for all i. But observe that the positivity
assumptions on the insertion and deletions costs prevent Di(a, b) and Dd(a, b)
to be zero. Therefore, xi and xi+1 must be substitution-neighbors for all i, with
zero-cost substitution. That is, by definition 3, xi and xi+1 share the same
prefix and the same suffix, between which xi contains σ1 and xi+1 contains σ2.
Moreover, cs(σ1, σ2) = D(xi, xi+1) = 0. By the assumptions on the substitution
costs, we obtain that σ1 = σ2. Therefore, xi = xi+1 for all i. In turn, xi = xj all
along the alignment. And since x = x0 and y = xn in the alignment, it follows
that x = y.

11

6.5 Triangle inequality: D(x, y) +D(y, x) ≥ D(x, z)

Let (x0, . . . , xn) be a minimal edit distance alignment from x to y, that is,
C(x0, . . . , xn) = D(x, y). By the definition of an alignment, x = x0 and y = xn.

Let also (y0, . . . , yk) be a minimal edit distance alignment from y to z, that
is, C(y0, . . . , yk) = D(y, z). By the definition of an alignment, again, y = y0
and z = yk.

Now consider the following: (x0, . . . , xn = y = y0, . . . , yk). It is easy to see
that this is an alignment from x to z. Therefore,

C(x0, . . . , xn = y0, . . . , yk) ≥ min{costs of all alignments from x to z} = D(x, z)

Moreover,

C(x0, . . . , xn = y0, . . . , yk) = C(x0, . . . , xn) + C(y0, . . . , yk) = D(x, y) +D(y, z)

Therefore, D(x, y) +D(y, z) ≥ D(x, z).

7 The assumptions are necessary,
not only sufficient

As the proofs above have demonstrated it, the assumptions introduced in sec-
tion 3 are sufficient for Minimal Edit Distance to be a distance metric. Some of
you have also shown that most of them are also necessary conditions (provided
Σ is a non-empty finite alphabet, and we wish to define Minimal Edit Distance
on the entire Σ∗):

• Suppose there is some x ∈ Σ such that ci(x) = 0. Then, the Minimal Edit
Distance of the empty string to the one-character-long string x will be at
most null: inserting the character x into the empty string creates the string
x, which is a zero-cost alignment between the two strings. The alignment
realizing the Minimal Edit Distance cannot be more costly than the cost
of this alignment. That is, D(ε, x) ≤ ci(x) = 0. This fact contradicts
the coincidence axiom (or non-negativity, if some alternative alignment is
even less costly).

• Similarly, if there is some x ∈ Σ such that cd(x) = 0, then D(x, ε) ≤
cd(x) = 0, contradicting the coincidence axiom (or non-negativity).

• Suppose there is some x ∈ Σ such that ci(x) < 0. Then D(ε, x) ≤ ci(x) <
0, contradicting non-negativity.

• Similarly, if there is some x ∈ Σ such that cd(x) < 0, then D(x, ε) ≤
cd(x) < 0, contradicting non-negativity.

• Suppose there is some x and y ∈ Σ such that cs(x, y) < 0. Then, let us
calculate the Minimal Edit Distance of the two, one-character-long strings
x and y: D(x, y) ≤ cs(x, y) < 0. But this would contradict non-negativity.

12

• Suppose there is some x and y ∈ Σ such that x 6= y and cs(x, y) = 0.
Then, again, by observing that the one-character string x can be trans-
formed into the one-character string y by a single substitution operation,
we obtain D(x, y) ≤ cs(x, y) = 0. But this would again contradict either
the coincidence axiom, or non-negativity.

Before discussing the case cs(x, x) > 0, we have to clarify whether no oper-
ation is an alternative to replacing x with x. Suppose for instance that we are
computing the distance of string x from the string x. How can we align them?
Solutions include: (1) no operation at all (cost is 0), (2) replace character x with
character x (cost is cs(x, x)), (3) delete character x and insert character x (cost
is cd(x) + ci(x)), (4) insert and delete any other character(s) beside applying
one of the previous options. Given our results above, we already know that the
cost of (2) must be non-negative, and the costs of (3) and (4) must be positive.
If we want Minimal Edit Distance to be a distance metric, then the distance of
the string x from the string x must be null; hence, (3) and (4) cannot provide
the optimal alignment. If we follow the informal introduction of Minimal Edit
Distance, then no operation at all is an option, alignment (1) will provide the
correct distance, and we can freely suppose cs(x, x) to be positive. If, however,
we follow the algorithm, then each character is made to correspond to some
other character, no operation is not an option, and cs(x, x) must be null for the
coincidence axiom to hold.

Finally, is ci(x) = cd(x) a necessary condition for the edit distance to be
a distance metric? Technically speaking not. Imagine that ci(x) > cd(x), but
there exists a y ∈ Σ such that cd(x) = ci(y) + cs(y, x). In this case, it is less
costly to insert a y, and then to replace it with an x, than to insert x directly.
Moreover, although ci(x) = cd(x) does not hold formally, still the cost of deleting
x is de facto equal to the costs of inserting x (via a temporary y). Note that while
inserting an x via a y is possible in the “series of operations” approach (e.g.,
my formal definitions), it is not always possible in the “alignment” approach
(e.g., using the algorithm).

8 Summary

I hope that I could show you how a seemingly simple question (whether the
Minimal Edit Distance is a distance metric) can be approached in different
ways, and what subtle problems it raises. For instance, we have seen that
the alignment approach and the transformational path approach might behave
surprisingly differently.

I also hope that your mathematical skills (very useful if you become either
a programmer or a linguist) have been trained. You have seen how a proof by
contradiction can be reformulated as a direct proof, and what minuscule details
should be checked before a proof can be made work.

Any feedback on this note (as any feedback in general) will be very much
appreciated, either addressed directly to me, or via Jen.

Tamás Biró

13

