
Language and Computation
LING 227 01 / 627 01 / PSYC 327 01
Midterm take-home exam
Due: March 27, 2014

The solutions to the midterm must be handed in on paper at the beginning of
the class. It must be typed (printed), no handwritten solution will be accepted.
Learning how to type mathematical formulae, code and pseudo-code is part of
the skills one has to acquire.

Additionally, you will also send your code in an email by 4 pm on the day of
the deadline to tamas.biro@yale.edu. The file name must contain both your
first name and last name, and must not contain white space characters.

This midterm contributes 20% to your final grade.

Comparing text categorization systems

We discussed in length the problem of text categorization in class. It is your
turn now to implement two such approaches. The goals of this midterm are as
follows:

1. Provide hands-on experience with one of the simplest computational lin-
guistic problems, which nevertheless includes elements of many aspects of
the field (such as n-grams, machine learning, familiarity with some cor-
pora, various evaluation metrics, and error analysis).

2. Develop your programming skills, and show you some useful tricks.

3. Develop the skills that are necessary to critically assess a natural language
processing system, by reflecting on how it relates to various aspects of
natural language.

Here are two articles that summarize different approaches to text classi-
fication using n-grams (both are also available on the course website and on
classes.v2, among “Resources/Readings”):

Cavnar, William B., and John M. Trenkle (1994). “N-gram-based
text categorization.” Proceedings of the 1994 Symposium on Docu-
ment Analysis and Information Retrieval, pp. 161–174.

Damashek, Marc (1995). “Gauging similarity with n-grams: Language-
independent categorization of text.” Science 267:843–848.

You will first read these two articles. They both provide a solution for the
problem of text categorization based on n-grams. You will then implement and
test both approaches. You will finally report your results in a (scholarly) squib.
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You will submit an at most 4-page-long “essay” (single-spaced is ok, but
strictly not more than four pages!). Please also provide your codes as an
appendix, both on paper and in an email. The appendix does not count toward
the page limit.

Your text can heavily rely on these two articles, referring to them for details.
The squib should rather focus on what you have to add to these articles, details
that are specific to your implementations, and so on. You may want to slightly
alter the two methods relative to their original forms in the cited articles, in
order to make them more comparable. Feel free to include bullet points, etc. in
order to condense your paper.

Nevertheless, the structure of your paper should, at least symbolically, follow
the basic structure of an article in computational linguistics (such as the Cavnar
and Trenkle paper, but not the Damashek paper):

• Abstract [can be very short]

• Section 1: General introduction to the topic, main motivations.

• Section 2: Specifying the concrete research question being tackled.

• Section 3: Methodology, details of the experiments, implementations.

• Section 4: Primary results of the experiments described in Part 3.

• Section 5: Discussion of the results vis-à-vis the research question posed
in Part 2. Problems and limitations.

• Section 6: General conclusion: what have we contributed to the topic
introduced in Part 1? Directions for future research.

• References according to scholarly standards. [I accept all reference sys-
tems, as long as they are used consistently.]

In particular, you will pose the following research question:

Does the cosine measure or the out-of-place measure provide a more
useful character-based n-gram approach to retrieving texts belong-
ing to a specific genre?

Beside shortly explaining and implementing each of the two approaches, you
will also compare them: how do they differ conceptually, how do they differ in
performance, and why do you think one works better than the other?

1.1 Using the Brown corpus with NLTK

During the experiment, you will work on the famous Brown Corpus (see, e.g.,
http://fss.plone.uni-giessen.de/fss/faculties/f05/engl/ling/help/materials/restricted/

brown/file/brown.pdf). It comes conveniently together with NLTK: refer to the
section ‘Brown Corpus’ in the NLTK book (http://www.nltk.org/book/ch02.html).
See also the CONTENTS and README files in your nltk data/corpora/brown/.

Try out the following commands (beside those discussed by the NLTK book):
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>>> import nltk

>>> nltk.download(’brown’)

>>> brown.categories()

>>> brown.fileids()

>>> brown.raw(’cn19’)

>>> brown.sents(’cn19’)

>>> brown.words(’cn19’)

>>> brown.fileids(categories=’news’)

Your training corpus, based on which you will create your reference vectors,
will be the first ten files of each category (e.g., ca01 to ca10 in the news cate-
gory). Unfortunately, you will have to ignore the categories science fiction and
humor, for they include too few files.

Subsequently, you create a test corpus from all the files numbered between
11 to 15 (for instance, ca11 to ca15 in the news category). That will result in
a test corpus of 65 files (given the 13 categories with more than 15 files each).

The tasks that each of your n-gram models have to solve is the following:

1. For each file in the test corpus, provide the category Ci to which
it most probably belongs.

2. Given category Ci (such as, news or adventure), retrieve all texts
in the test corpus that your model categorizes as belonging to Ci.

The file names in the Brown corpus (and the corpora/brown/cats.txt file)
provide the Golden standard to which your models’ output should be compared.
For each Ci, a true positive is a text that has been correctly categorized as
belonging to category Ci; a false positive is a text that actually does not belong
to Ci, but has been categorized as such; a true negative is a text that has been
correctly categorized as not belonging to Ci, and finally a false negative is a
text that has been erroneously categorized as not belonging to Ci.

You will be able to employ different evaluation measures (refer to the lecture
slides of February 06, pp. 7–9):

• Accuracy: The proportion of the files that have been correctly classified
(either as news, or as hobbies, or as. . . ) in the entire set of 65 files.

• Precision: For each category Ci, the proportion of the true positives to
those that have been categorized as belonging to category Ci.

• Recall: For each category Ci, the proportion of the true positives to those
that in reality belong to Ci (true positives and false negatives).

• F-measure: For each Ci, the harmonic mean of precision and recall.

Finally, you will also perform error analysis: a closer look at the results
may reveal where things tend to go wrong. For instance, are there categories
that are frequently confused? What happens if you merge these categories?
Is there a specific text that is repeatedly misclassified? Check that specific text,
and you might discover a sometimes extremely simple reason why it is an outlier.
Sometimes, however, uncovering the reasons of some results is extremely hard.
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1.2 Python tricks

First, since you will generate n-grams on the character level, you may wish to
transform each text into a single string. Here is a first approximation:

>>> ’ ’.join(brown.words(’cn19’))

But, before doing so, it may be useful to perform some pre-processing: re-
moving punctuation marks, decapitalizing all upper case characters, etc. Does
it improve the overall performance of your models if you also remove stopwords?
A list of stopwords is also provided by NLTK:

>>> nltk.download(’stopwords’)

>>> from nltk.corpus import stopwords

>>> stopwords.words(’english’)

It is easy to generate n-grams of a string in Python. The trick is to first
create slices of the string and then to zip them:

>>> string="abcdefg"

>>> string1=string[1:]

>>> string1

’bcdefg’

>>> zip(string,string1)

[(’a’, ’b’), (’b’, ’c’), (’c’, ’d’), (’d’, ’e’), (’e’, ’f’), (’f’, ’g’)]

>>> string2=string[2:]

>>> string2

’cdefg’

>>> zip(string,string1,string2)

[(’a’, ’b’, ’c’), (’b’, ’c’, ’d’), (’c’, ’d’, ’e’),

(’d’, ’e’, ’f’), (’e’, ’f’, ’g’)]

Finally, please remember the remark made in the notes of February 13:
You should count frequencies by using a hash table (or a dictionary in Pythonese),
and not a k × k × . . .× k table (where k is the size of the alphabet):

>>> string = "aabbaabbaaaa" # a sample string

>>> trigrams=zip(string,string[1:],string[2:])

>>> counts={} # create an empty dictionary

>>> for trigram in trigrams :

... if trigram in counts : # check if dictionary entry exists

... counts[trigram] += 1 # increase the count by 1

... else :

... counts[trigram] = 1 # create dictionary entry with value 1

...

>>> counts # trigrams with their frequencies

{(’a’, ’b’, ’b’): 2, (’b’, ’a’, ’a’): 2, (’a’, ’a’, ’a’): 2,

(’a’, ’a’, ’b’): 2, (’b’, ’b’, ’a’): 2}

This hash table is much more compact than a sparse matrix of size kn.
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