Language and Computation
LING 227 01 / 627 01 / PSYC 327 01
Assignment #4

Due: April 10, 2014

The solutions to the problem set must be handed in on paper at the beginning of
the class. It must be typed (printed), no handwritten solution will be accepted.
If you do not know how to draw trees, graphs, etc. electronically, then draw
them by hand on a sheet of paper, scan that paper, and include the image into
your file.

Additionally, you will also send your Python code in an email by 4 pm on
the day of the deadline to tamas.biro@yale.edu. The file name must contain
both your first name and last name.

Fach problem set is worth 10 points in total.

Problem 1: Parsing mathematics (10 points)

The “language” of mathematics is not a natural language. It has been con-
sciously created by humans, and it is not a means to communicating a broad
range of messages in spontaneous speech or other contexts. Therefore, it has a
structure that is simple enough for you to practice important aspects of natural
language processing, even if the problem does not seem to be language-related.
Our goal is to judge if statements such as the following are well-formed:

3+45 = 6x%8
40+ (10—-2) = 3+3x%8
(4%x10+8 > *50—(1+1+1
Judging their syntactic well-formedness is the first step toward actually de-

ciding whether they are true or false. But we will not go so far, into semantics,
right now. Here is the context free grammar that serves as our starting point:

E:{O, 1, 2’ 3’ 4, 5, 6’ 7’ 8, 9, +’ _’ *, /, =’ >’ <, (,)}
N ={S,E,N, D}

We will not make use of exponentiation and more advanced operations. We
also ignore < and >, as well as negative numbers and the negative of some
expression. S is the designated start symbol, and here are the production rules:

S—-FEF=F S—E>FE S—E<E
F—+-F+F EFE—-FE-F E—-FExFEF FE—-SE/FE
F—-(E) FE—N N — D N —-ND D —0l112|31415]|6171819

Part 1.1: Understanding this grammar (2 point)

Question 1: Describe in words the formal language generated by this grammar.
Question 2: Which class in the Chomsky hierarchy does this language (over ¥*)
belong to? Which production rule can be “blamed” for it not belonging to a
narrower class? Can you formally prove that this language does not belong to
a narrower class?

Part 1.2: Ambiguity of our grammar (1 point)

This grammar is highly ambiguous: a well-formed string can be assigned mul-
tiple parses. Is this a problem?

Technically speaking, it may be a problem, but it really depends on what
we are using our grammar for. In linguistics, ambiguities are crucial if they
influence semantics, that is, the meaning of the sentence. Remember sentences
such as I shot an elephant in my pajamas: two different meanings are associated
with two different parse trees (depending on the place of the preposition phrase
in my pajamas, see Fig. 13.5 of Jurafsky and Martin).

In our “language of mathematics”, the ‘meaning’ of an expression would be
its value (a number or a truth value). Each syntactic rewrite rule comes with
some semantics: for instance, whenever the E — E + E rule is used by syntax,
semantics should know that the ‘meaning’ (mathematical value) of the higher
node should be made equal to the sum of the meanings (values) of the left and
right daughters.

Question: Provide two strings that are well-formed in this grammar, and
which are both ambiguous. In the first case, ambiguity will not have a semantic
consequence for the entire string, while it will in the second case. Show why
each expression is ambiguous, and why there is or there is no consequence to
this ambiguity.

A suggestion: you can visualize the semantics (the ‘meaning’, the value) of
each phrase as an index to the node on the syntactic tree. Hereby one can easily
keep track of compositional semantics: how the meaning of a phrase derives from
the meanings of its components.

Part 1.3: Improving our grammar (2 points)

Mathematical notations are not ambiguous to this extent. So we have to con-

clude that the grammar, as presented above, may be weakly equivalent, but

not strongly equivalent to the “language of mathematics”.

Question 1: What does weak and strong equivalence means in this case?
Moreover, beside ambiguity, our grammar has further problems.

Question 2: Can you identify at least one such problem?

Question 3: Refine the grammar so that it will not allow semantic ambiguity.

Part 1.4: Chomsky Normal Form (1 point)

Turn your refined grammar into Chomsky Normal Form. Explain why and how
you have done it.

Part 1.5: Implementing the CKY Algorithm (3 points)

Implement the (non-probabilistic) CKY Algorithm for recognition in plain
Python (i.e., without using the NLTK package), for this refined grammar. Your
program will read a string from the standard input, and return either accept
or reject. The grammar itself should already be hardcoded into your program.
Suppose that the input string does not contain white spaces.

Practicalities: Here is an excerpt of how I have encoded my grammar, which
you are welcome (but do not have) to follow:

rules_bin=[("S" , "E", "RE"), # stands for the rule S -> E RE
(IIREII’ llRll’ llEll)’ # etc.

>

&l‘ll;]" s IINII’ IINII)

]
rules_fin=[("R", "="), # stands for the rule R -> ’=’
("R", ||>n), # etc.
&l‘lE‘:l’l, ||9")
]

Part 1.6: Testing your implementation with NTLK (1 point)

Needless to say, NLTK also has several parsing tools. Read Chapter 8 of the
NLTK book (http://www.nltk.org/book/ch08.html) and the extra material
(http://www.nltk.org/book/ch08-extras.html).

Do you want to check whether you have made any error when you trans-
formed your grammar to a CNF and then implemented the CKY algorithm?
Make use of the parser.nbest_parse() method to test your own implementa-
tion. Whenever your code returns reject, this method should return an empty
list [].

You will submit (both on paper and in an email) the code that includes
both your implementation and the comparison of its output to the NLTK out-
put.

Practicalities: Observe that the nltk.parse_cfg() method requires single
quotes around terminals. The parser.nbest_parse() method accepts a string
as its argument, but you can also use type conversion (1ist (string)) to convert
you string input into a list sent, as done in the NLTK book example.

