Methodological skills

rMA linguistics, week 7

Tamás Biró
ACLC
University of Amsterdam
t.s.biro@uva.nl

Types of the explanatory variables

× type of the dependent variable

Scale of the	categorical	quantitative
explanatory	(nominal, ordinal)	(interval, ratio,
variable(s) is	,	logarithmic)
Dependent variable	crosstabs	logistic regression
with categorical scale		
Dependent variable	t- $test$,	correlation,
with quantitative scale	ANOVA	regression

Student projects:

Motivation, background: anecdotal evidence, past data.

Precise research question, operationalized.

Units, variables, population, sample.

Sampling distribution of the mean:

The Central Limit Theorem

NB: Sampling distribution of other statistics discussed later.

Central Limit Theorem

Four steps last week (note the colours: red, black and green):

1. An ugly mathematical function with two parameters (μ and σ):

$$y = N(x|\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- 2. Normal distribution: a distribution that follows such an ugly function.
- 3. A mathematician will tell you that Mean of such a distribution (μ) = first parameter of the function (μ) . Std. dev. of such a distribution (σ) = 2nd param. of the function (σ) .
- 4. Central Limit Theorem (next slide): $\mu = \mu$ and $\sigma = \sigma/\sqrt{n}$.

Central Limit Theorem

- Given population with any distribution. Population mean is μ . Population standard deviation is σ .
- Draw a $simple \ random \ sample \ (SRS)$ of size n. Calculate sample mean \bar{x} . Sampling distribution of the mean: repeat sampling + averaging many times.

Central Limit Theorem:

Sampling distribution of \bar{x} (approximately) follows a Normal distribution: $N\left(x|\mu=\mu=\mu, \sigma=\sigma=\frac{\sigma}{\sqrt{n}}\right)$.

Central Limit Theorem

• Central Limit Theorem (version 1):

sampling distribution of \bar{x} is Normal: $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

- This theorem is only approximately true if original population is not Normal, but n is large. (Not true if n is small.)
- Central Limit Theorem (version 2):

The sum (and, hence, the mean) of independent random variables X_1 , X_2 ,..., X_n approaches ('converges' to) a Normal distribution, as n grows larger.

- Therefore: many statistical procedures require:
 - Independence of the cases in the sample.
 - Normality of the population, or
 - close to Normal distribution and larger sample size, or
 - very large sample size (if Normality does not hold).

Additionally:

"Normality of the population" can be replaced by "Normality of the sample".

Testing Normality of the sample: Normal quantile plots!

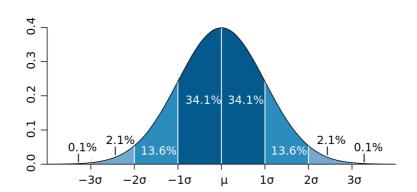
Standard Normal (Gaussian) distribution

Normal (Gaussian) distribution

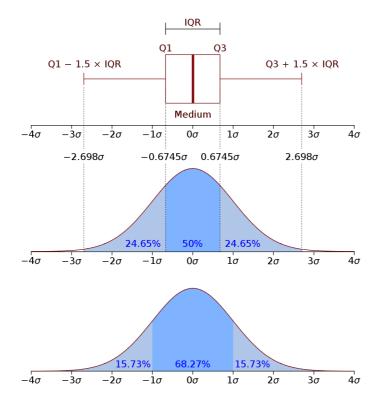
$$N(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \overset{\text{e.s.}}{\overset{\text{o.1}}{\circ}} \frac{13.6\%}{2.1\%} \overset{\text{34.1}\%}{\overset{\text{34.1}\%}{\circ}} \overset{\text{34.1}\%}{\overset{\text{34.1}\%}{\overset{\text{34.1}\%}{\circ}}} \overset{\text{34.1}\%}{\overset{\text{34.1}\%}{\overset{\text{34.1}\%}{\circ}}} \overset{\text{34.1}\%}{\overset{\text{34.1}\%}$$

- e=2.7182... Mean: μ . Standard deviation: σ .
- Area under curve is 1.
- 68–95–99.7 rule: area within $1/2/3~\sigma$ from μ .

$$N(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$



- e=2.7182... Mean: $\mu=0$. Standard deviation: $\sigma=1$.
- Area under curve is 1.
- 68-95-99.7 rule: area within 1/2/3 from 0.



http://en.wikipedia.org/wiki/File:Boxplot_vs_PDF.svg

A Standard Normal Table: cumulative proportions

http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-a.pdf

Normal distribution is a continuous distribution:

Probability $P(a < X \le b)$ of the random variable X having a value between a and b is equal to the area under the $probability\ density$ curve between a and b.

• Value for b in the Standard Normal table: $P(-\infty < X \le b)$, the area between $-\infty$ and b.

A Standard Normal Table: cumulative proportions

http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-a.pdf

- Probability $P(a < X \le b)$ of the random variable X having a value between a and b is the difference of the value for b and the value for a: $P(-\infty < X \le b) P(-\infty < X \le a)$.
- Symmetry of the Standard Normal Distribution: $P(-\infty < X \le b) = P(-b \le X < +\infty).$
- $P(|X| \ge |a|) = 2 \cdot P(-\infty < x \le -|a|).$

Normal calculations, inverse Normal calculations

- Calculate area right to z = 1.47.
- Find area from z=-1.82 to z=0.93.
- What is z if left to it you find area 0.300?
- Similar questions with any other Normal distribution: normalize it $(x \to z)$ first.

Normal calculations, inverse Normal calculations

And now, you:

- For what z is 95% of area between -z and z?
- For what z is 5% of area right of z?

Transforming variables: Standardizing observations

Standardizing observations

 μ : population mean of variable X.

 σ : population standard deviation of variable X.

Cases	X	Y	 $Z = X \ standardized$
case 1	x_1		$z_1 = rac{x_1 - \mu}{\sigma / \sqrt{n}}$
case 2	x_2		$z_2=rac{x_2-\mu}{\sigma/\sqrt{n}}$
case i	x_i		$z_i = rac{x_i - \mu}{\sigma/\sqrt{n}}$
case n	x_n		$z_n = rac{x_n - \mu}{\sigma / \sqrt{n}}$
sample mean	\overline{x}		$\overline{z} = rac{\overline{x} - \mu}{\sigma / \sqrt{n}}$
sample std. dev.	s		

Standardizing observations

- μ : population mean of variable X. σ : population standard deviation of variable X.
- Transform each data point: $z_i = \frac{x_i \mu}{\sigma / \sqrt{n}}$.
- Averaging over the entire sample: $z:=\overline{z}=\frac{\overline{x}-\mu}{\sigma/\sqrt{n}}$.
- \bullet z-statistic: a new statistic that we measure on the sample.
- Sampling distribution of \overline{x} is $N\left(\mu,\frac{\sigma}{\sqrt{n}}\right)$. Thus, the sampling distribution of the z-statistic is N(0,1).

Toward the inference for the mean

Suppose $\mu=3.5$ and $\sigma=1.5$. You draw a random sample of size n=9, and calculate \overline{x} .

- What is the probability that $\overline{x}>3.5$? The same as the probability of $z=\frac{\overline{x}-3.5}{1.5/\sqrt{9}}>0$.
- What is the probability that $\overline{x} < 2.5$? The same as the probability of z < -2.
- What is the probability that $3 < \overline{x} < 4$? The same as the probability that -1 < z < +1.

Inference for the mean: z-test and p-scores

Suppose you know that $\sigma=1.5$. You have drawn a Simple Random Sample (SRS) of size n=9. You have got $\overline{x}=4$.

Your null-hypothesis H_0 is that $\mu = 3.5$. Supposing H_0 is true,

- (... what is the probability of drawing a SRS with $\overline{x} = 4$?)
- ... what is the probability of drawing a SRS with an \overline{x} at least as extreme 4: $\overline{x} \ge 4 = \mu + 0.5$? or $\overline{x} \le \mu 0.5$?
- ... what is the probability of drawing a SRS with an \overline{x} at least as extreme 4: $\overline{x} \geq 4 = \mu + 0.5$? or $\overline{x} \leq 3 = \mu 0.5$?

Inference for the mean: confidence interval

Suppose you know that $\sigma=1.5$. You have drawn a Simple Random Sample (SRS) of size n=9. You have got $\overline{x}=4$.

- What is the best guess you can give for μ ?
- Find an interval such that if μ falls within that interval, then the probability of drawing a SRS with \overline{x} not more extreme than 4 is less than p < 0.05.

Normal quantile plots

Do data follow Normal distribution?

- Arrange observed data values from smallest to largest.
 Record what percentile a value occupies.
- Normal score: z value of a percentile in the Standard Normal distribution. The value that the corresponding percentile should have, if the distribution were really Normal.
- Plot data against corresponding Normal score.

If data follow Normal distribution, then plotted points lie close to a straight line.

Basics of inference

(Cf. Cohen's two articles.)

- H_0 (null-hypothesis): effect size ES = 0 (most often). (Cohen, 'The Earth Is Round (p < .05)': "nil hypothesis")
- H_a (alternative hypothesis): there is an effect, ES $\neq 0$. Cohen: the "nil hypothesis" is (practically) always true!
- Cf. Cohen, 'A Power Primer': H_1 : there is a well-defined small/medium/large ES.

Goal: reject H_0 to argue for H_a .

- H_0 (null-hypothesis): effect size ES = 0 (most often). Cohen, 'The Earth Is Round (p < .05)': "nil hypothesis"
 - \rightarrow which (usually) correspond to statistic = 0.

Sampling distribution of the test statistic: if H_0 is true, then test statistic is most often close to 0.

- H_a (alternative hypothesis): there is an effect, ES $\neq 0$. H_1 : the effect is ES (where ES $\neq 0$).
 - \rightarrow which (usually) correspond to a statistic $\neq 0$.

- H_0 (null-hypothesis): effect size ES = 0 (most often). Cohen, 'The Earth Is Round (p < .05)': "nil hypothesis"
 - \rightarrow which (usually) correspond to statistic = 0.

Sampling distribution of the test statistic: if H_0 is true, then test statistic is most often close to 0.

p= the probability of (obtaining a test statistic at least as extreme as the one we have just obtained based on our observations | provided that H_0 is true).

p= the probability of (obtaining a test statistic at least as extreme as the one we have just obtained based on our observations | provided that H_0 is true).

- Low p-value \rightarrow either H_0 is false, or we have bad luck.
- We reject H_0 with **confidence level** α if $p < \alpha$
 - the level of "bad luck" that we hope never to have.
- If statistic from data > critical value corresponding to α , then $p < \alpha$.

p= the probability of (obtaining a test statistic at least as extreme as the one we have just obtained based on our observations | provided that H_0 is true).

- High p-value $\to H_0$ is either true, or false (e.g., small effect size), or we have bad luck.
- We say we do not have sufficient evidence to reject H_0 .
- BIG ERROR: to conclude that H_0 is true!

Example: z-test

- (Suppose we know std. dev. of population is σ .)
- H_0 : the population mean is m.
- Sample of size n. Data $x_1, x_2, ..., x_n$.

 Calculate sample mean \overline{x} , then z-statistic: $z := \frac{\overline{x} m}{\sigma / \sqrt{n}}$.
- $P(z = ...|H_0)$: what is the chance of getting such a value for z, supposing H_0 is true?
- Hence, is it probable that H_0 is true?

Example: z-test

- (Known σ .) H_0 : the population mean is m. Sample of size n. Calculate z-statistic: $z:=\frac{\overline{x}-m}{\sigma/\sqrt{n}}$.
- From the Central Limit Theorem we know that if H_0 is true, then probability of |z|>1.96 is less then 5%.

So, critical value for C=95% confidence level: $z^*=1.96$. If $z>z^*=1.96$, then reject H_0 with confidence level $\alpha=0.05$ (two-tailed).

• Higher n or higher $\frac{\overline{x}-m}{\sigma}$ ('effect size') \to higher $z \to$ higher chance to reject H_0 , given a simple random sample (SRS).

Some of the problems with inference

(Cf. Cohen's two articles.)

- H_0 (null-hypothesis): effect size ES = 0 (most often). (Cohen, 'The Earth Is Round (p < .05)': "nil hypothesis")
- H_a (alternative hypothesis): there is an effect, ES $\neq 0$. Cohen: the "nil hypothesis" is (practically) always true!
- Cf. Cohen, 'A Power Primer': H_1 : there is a well-defined small/medium/large ES.

Goal: reject H_0 to argue for H_a .

(Cohen, 'The Earth Is Round (p < .05)':

A correct, non-probabilistic Aristotelian *modus tollens*:

- If H_0 is correct, then data D cannot occur.
- D has, however, occurred.
- Therefore, H_0 is false.

(Cohen, 'The Earth Is Round (p < .05)':

An incorrect probabilistic "modus tollens":

- If H_0 is correct, then data D would probably not occur.
- D has, however, occurred.
- Therefore, H_0 is probably false.

Conditional probability

- P(A|B): probability of A, provided that we know that B is true. $P(A|B) = \frac{P(A\cap B)}{P(B)}$.
- Researcher interested in $P(H_0|D)$: the probability that H_0 is true, given observation D.
- Statistics can only provide $P(D|H_0)$: probability of obs. data (and more extreme data), given H_0 .

Bayes' theorem:

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A|B) \cdot P(B)}{P(A)}$$

(Cohen, 'The Earth Is Round (p < .05)':

Result	normal	schizophrenic	Total
Negative test	949	1	950
Positive test	30	20	50
Total	979	21	1000

Test is "good": most normal people tested as negative, and most schizo people tested as positive. Still, a positive test does not prove schizophrenia (p=0.60), because very low $P(H_0)$.

Type I error and Type II error

Statistical procedure	H_0 is true	$\mid H_1 \mid H_a$ is true
set at conf. level ${\cal C}$	in reality	in reality
Effect-size is	=0	$\neq 0$
rejects H_0	Type I error	
does not reject H_0		Type II error

$$\alpha = 1 - C = P(\text{Type I error}|H_0) \; ; \; \beta = P(\text{Type II error}|H_a)$$

What interests us: **power** of the statistical test = $1 - \beta$: the probability of rejecting H_0 if H_0 is false.

Cohen: power depends on Effect-size, n and C (or α).

SPSS lab

http://www.birot.hu/courses/2012-methodology/lab2.html

Sections A-D. (Sections E and F deferred to next week.)

In two weeks time

- Finish z-test, t-test, power, etc.
- Either ANOVA or crosstabs.
- SPSS-lab.
- Two student presentations.

See you in two weeks!

