Methodological skills rMA linguistics, week 6

> Tamás Biró ACLC University of Amsterdam t.s.biro@uva.nl

Throwing a die

- **Population:** the outcomes of all throws in NL in 2012.
- Distribution of the population: approx. uniform distribution with *parameters* min = 1, max = 6, $\mu = 3.5$, etc.
- Sample: observations $x_1, ..., x_n$, \rightarrow statistics \overline{x} , s_{n-1} , etc.
- Sampling distribution of the mean for samples of size n.
 The lesson of the Excel experiment last week: Mean of this sampling distribution ≈ μ.
 Std. dev. of sampling distribution decreases, as n increases.

Reliability and validity

Reliable, Not Valid

Both Reliable & Valid

http://en.wikipedia.org/wiki/File:Reliability_and_validity.svg

Reliability and validity

• **Reliability** of the procedure:

Procedure is *reliable* if sampling distribution has small spread — given our procedure.

Repeating the experiment will yield similar results.

• Validity of the procedure:

Unbiased statistic: if mean of sampling distribution is targeted parameter — given our procedure.

The experiment answers our question.

Sampling distribution

• To reduce bias, achieve validity:

use random sampling!

- To reduce variability, achieve reliability :
 use larger sample!
 Central Limit Theorem!
- Population size N (if much larger than sample size n) does not matter.

Sampling distribution of the mean: The Central Limit Theorem

NB: Sampling distribution of other statistics discussed later.

Central Limit Theorem

• Given population with any distribution.

Population mean is μ . Population standard deviation is σ .

- Draw a simple random sample (SRS) of size n.
 Calculate sample mean x̄.
- Central Limit Theorem:

sampling distribution of \bar{x} is (approx.) Normal: $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

Normal (Gaussian) distribution

http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg

- e = 2.7182... Mean: μ . Standard deviation: σ .
- Area under curve is 1.

Central Limit Theorem

- Even if we do not know the distribution the entire population, we know the behaviour of the means \bar{x} of large samples:
- Sampling distribution of the mean is distributed around the mean μ of the population, and
- follows a Normal distribution of mean μ and st. dev. $\frac{\sigma}{\sqrt{n}}$. The larger the sample size n, the narrower the distribution.
- Hence, infer μ from \overline{x} , for *large* and *random* samples.

Central Limit Theorem

• **Central Limit Theorem** (version 1):

sampling distribution of \bar{x} is Normal: $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

- This theorem is only approximately true if original population is not Normal, but *n* is large. (Not true if *n* is small.)
- **Central Limit Theorem** (version 2):

The sum (and, hence, the mean) of *independent* random variables X_1 , X_2 ,..., X_n approaches a Normal distribution, as n grows large.

- Therefore: many statistical procedures require:
 - Independence of the cases in the sample.
 - Normality of the population, or
 - close to Normal distribution and larger sample size, or
 - very large sample size (if Normality does not hold).

Additionally:

"Normality of the population" can be replaced by "Normality of the sample".

Testing Normality of the sample: Normal quantile plots!

Standard Normal (Gaussian) distribution

Normal (Gaussian) distribution

- e = 2.7182... Mean: μ . Standard deviation: σ .
- Area under curve is 1.
- 68–95–99.7 rule: area within 1/2/3 σ from $\mu.$

• e = 2.7182... Mean: $\mu = 0$. Standard deviation: $\sigma = 1$.

- Area under curve is 1.
- 68–95–99.7 rule: area within 1/2/3 from 0.

http://en.wikipedia.org/wiki/File:Boxplot_vs_PDF.svg

Tamás Biró, UvA

A Standard Normal Table: *cumulative proportions* http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-a.pdf

• Normal distribution is a **continuous distribution**:

Probability $P(a < X \le b)$ of the random variable X having a value between a and bis equal to the area under the *probability density* curve between a and b.

• Value for b in the Standard Normal table: $P(-\infty < X \le b)$, the area between $-\infty$ and b.

A Standard Normal Table: *cumulative proportions* http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-a.pdf

- Probability $P(a < X \le b)$ of the random variable X having a value between a and b is the difference of the value for b and the value for a: $P(-\infty < X \le b) - P(-\infty < X \le a)$.
- Symmetry of the Standard Normal Distribution: $P(-\infty < X \le b) = P(-b \le X < +\infty).$

•
$$P(|X| \ge |a|) = 2 \cdot P(-\infty < x \le -|a|).$$

Normal calculations, inverse Normal calculations

- Calculate area right to z = 1.47.
- Find area from z = -1.82 to z = 0.93.
- What is z if left to it you find area 0.300?
- Similar questions with any other Normal distribution: normalize it $(x \rightarrow z)$ first.

Normal calculations, inverse Normal calculations

And now, you:

- For what z is 95% of area between -z and z?
- For what z is 5% of area right of z?

Standardizing observations

Standardizing observations

- μ : population mean of variable X.
- σ : population standard deviation of variable X.

Cases	X	Y	 Z = X standardized
case 1	x_1		$z_1=rac{x_1-\mu}{\sigma/\sqrt{n}}$
case 2	x_2		$z_2=rac{x_2-\mu}{\sigma/\sqrt{n}}$
case i	x_i		$z_i = rac{x_i - \mu}{\sigma / \sqrt{n}}$
case n	x_n		$z_n = rac{x_n - \mu}{\sigma / \sqrt{n}}$
sample mean	\overline{x}		$\overline{z} = rac{\overline{x}-\mu}{\sigma/\sqrt{n}}$
sample std. dev.	s		

Standardizing observations

- μ: population mean of variable X.
 σ: population standard deviation of variable X.
- Transform each data point: $z_i = \frac{x_i \mu}{\sigma / \sqrt{n}}$.
- Averaging over the entire sample: $z := \overline{z} = \frac{\overline{x} \mu}{\sigma/\sqrt{n}}$.
- *z*-statistic: a new statistic that we measure on the sample.
- Sampling distribution of \overline{x} is $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. Thus, the sampling distribution of the *z*-statistic is N(0, 1).

Toward the inference for the mean

Suppose $\mu = 3.5$ and $\sigma = 1.5$. You draw a random sample of size n = 9, and calculate \overline{x} .

- What is the probability that $\overline{x} > 3.5$? The same as the probability of $z = \frac{\overline{x} - 3.5}{1.5/\sqrt{9}} > 0$.
- What is the probability that $\overline{x} < 2.5$? The same as the probability of z < -2.
- What is the probability that $3 < \overline{x} < 4$? The same as the probability that -1 < z < +1.

Inference for the mean: z-test and p-scores

Suppose you know that $\sigma = 1.5$. You have drawn a Simple Random Sample (SRS) of size n = 9. You have got $\overline{x} = 4$.

Your null-hypothesis H_0 is that $\mu = 3.5$. Supposing H_0 is true,

- (... what is the probability of drawing a SRS with $\overline{x} = 4$?)
- ... what is the probability of drawing a SRS with an \overline{x} at least as extreme 4: $\overline{x} \ge 4 = \mu + 0.5$? or $\overline{x} \le \mu 0.5$?
- ... what is the probability of drawing a SRS with an \overline{x} at least as extreme 4: $\overline{x} \ge 4 = \mu + 0.5$? or $\overline{x} \le 3 = \mu 0.5$?

Inference for the mean: confidence interval

Suppose you know that $\sigma = 1.5$. You have drawn a Simple Random Sample (SRS) of size n = 9. You have got $\overline{x} = 4$.

• What is the best guess you can give for μ ?

• Find an interval such that if μ falls within that interval, then the probability of drawing a SRS with \overline{x} not more extreme than 4 is less than p < 0.05.

Normal quantile plots

Do data follow Normal distribution?

- Arrange observed data values from smallest to largest. Record what percentile a value occupies.
- Normal score: z value of a percentile in the Standard Normal distribution. The value that the corresponding percentile should have, if the distribution were really Normal.
- Plot data against corresponding Normal score.

If data follow Normal distribution, then plotted points lie close to a straight line.

Student projects: structure, variables

Student projects

• Intro: General problem

 \rightarrow anecdotal evidence and available data.

- Precise research question: Hypothesis to be tested/rejected (H_0 and H_a).
- How to proceed?
 Sample survey (observation) or experiment (intervention)?
- Pilot vs. "the real stuff".

Student projects:

Define research question, in terms of what is your:

- Motivation? General problem? Operationalized research question?
- Population?
 Parameter(s) of the population that interests you?
- Units?

Sample and sampling method?

• Explanatory variables, response/dependent variables? Levels of the variables?

Types of the explanatory variables

 \times type of the dependent variable

University of Amsterdam

Scale of the	categorical	quantitative
explanatory	(nominal, ordinal)	(interval, ratio,
variable(s) is		logarithmic)
Dependent variable	crosstabs	logistic regression
with categorical scale		
Dependent variable	t-test,	correlation,
with quantitative scale	ANOVA	regression

Article presentation

Bakeman and Gottman (1997). Chapter 4: 'Assessing observer agreement' (presented by Simone).

Next week

- *z*-test vs. *t*-test.
- Power.
- Relationships.
- χ^2 -test.
- SPSS-lab.

Read for next week:

Significance testing and power:

Jacob Cohen (1992), A power primer.

Jacob Cohen (1994), The earth is round (p j .05).

See you next week!

