Methodological skills rMA linguistics, week 5

> Tamás Biró ACLC University of Amsterdam t.s.biro@uva.nl

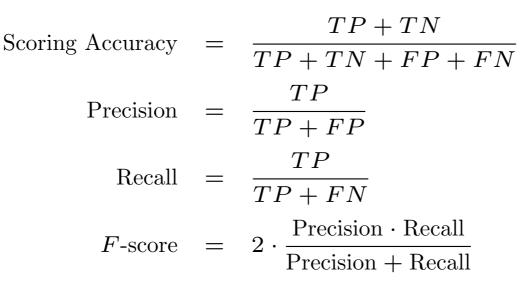
Measures of success in computational linguistics

RE: Catia Cucchiarini, Ambra Neri, Helmer Strik 'Oral proficiency training in Dutch L2: The contribution of ASR-based corrective feedback', presented last week by Elisabetta.

- Goal: find/accept what must be found/accepted, and do not return/reject what must be ignored/rejected.
- CA = correctly accepted (a.k.a. TP = true positives).
 CR = correctly rejected (a.k.a. TN = true negatives).
 FA = falsely accepted (a.k.a. FP = false positives).
 FR = falsely rejected (a.k.a. FN = false negatives).

Measures of success in computational linguistics

	Found true	Found false
ls true	true positives	false negative
Is false	false positives	true negative



(F-score: harmonic mean of prec. and recall, closer to the lesser of the two values.)

• Tomasello, M., D. Stahl, 'Sampling children's spontaneous speech: how much is enough?' (2004), in: *Journal of child language*, 31, 101-121.

• presented by Caitlin.

- Student projects
- Basic structure of a research paper

(See pdf of week 4.)

Types of the explanatory variables

 \times type of the dependent variable

Scale of the	categorical	quantitative	
dependent variable is	(nominal, ordinal)	(interval, ratio, log)	
Explanatory variable(s)	crosstabs	logistic regression	
with categorical scale			
Explanatory variable(s)	t-test,	correlation,	
with quantitative scale	ANOVA	regression	

Population: the outcomes of all throws in NL in 2012.

Distribution of the population:

(approximately) uniform distribution. No mode.

Parameters:

- Population size N = "very large".
- Population min = 1. Population max = 6.

Population range = 5.

• Population median = 3.5 (or 3 or 4).

Population 1st quartile = 2. Population 3rd quartile = 5.

Population 1th percentile = 1. 95th percentile = 6, etc.

Population interquartile range = 3. Semi-IQR = 1.5.

• Population mean $\mu = 3.5$.

Population variance (N): $\sigma_N^2 = \frac{8.75}{3} \approx 2.91667$.

Population standard deviation (N): $\sigma_N = \sqrt{\frac{8.75}{3}} \approx 1.708.$

Sample of size n = 1. Value obtained: x_1 .

Statistics of this sample:

- Mean of the sample: $\overline{x} = x_1$. Sample median = x_1 . Min. = x_1 . Max. = x_1 , etc.
- Range, IQR = 0.

Sample variance and standard deviation with n: $s_n = 0$. Sample variance and st. dev. with n - 1 is not defined.

Sampling distribution of the mean for samples of size n = 1:

Same as the population: an (approximately) uniform distribution. No mode.

- Min of the sampling distribution = 1. Max = 6. Range = 5.
- Median of the sampling distribution = 3.5. Etc.
- Mean of the sampling distribution = 3.5. Standard deviation (N) of the sampling distribution: $\sqrt{\frac{8.75}{3}} \approx 1.708$.

Sample of size n = 2. Values obtained: x_1 and x_2 .

Statistics of this sample:

- Sample size: n = 2.
- Mean of the sample: $\overline{x} = \frac{x_1 + x_2}{2}$. Sample median $= \frac{x_1 + x_2}{2}$.

Sample min: the lower one of x_1 and x_2 .

Sample max: the larger one of x_1 and x_2 .

• Range: $|x_1 - x_2|$.

Sample variance with n: $s_n^2 = \frac{(x_1 - x_2)^2}{4}$

Sample variance with n-1: $s_{n-1}^2 = \frac{(x_1-x_2)^2}{2}$

Sample standard deviation with n: $s_n = \frac{(x_1 - x_2)}{2}$

Sample standard deviation with n-1: $s_{n-1} = \frac{(x_1-x_2)}{\sqrt{2}}$

Sampling distribution of the mean for samples of size n = 2:

11	21	31	4 1	51	61
12	22	32	4 2	52	62
13	23	33	43	53	63
14	24	34	44	54	64
15	25	35	45	55	65
16	26	36	4 6	56	66

Triangular distribution: $P(\overline{x} = 1) = \frac{1}{36}$, $P(\overline{x} = 1.5) = \frac{2}{36}$, $P(\overline{x} = 2) = \frac{3}{36}$, $P(\overline{x} = 2.5) = \frac{4}{36}$, $P(\overline{x} = 3) = \frac{5}{36}$, $P(\overline{x} = 3.5) = \frac{6}{36}$, $P(\overline{x} = 4) = \frac{5}{36}$, $P(\overline{x} = 4.5) = \frac{4}{36}$, $P(\overline{x} = 5) = \frac{3}{36}$, $P(\overline{x} = 5.5) = \frac{2}{36}$, $P(\overline{x} = 6) = \frac{1}{36}$.

Sampling distribution of the mean for samples of size n = 2:

- Min of the sampling distribution = 1. Max = 6. Range = 5.
- Median of the sampling distribution = 3.5.
 Mode of the sampling distribution = 3.5.
- Mean of the sampling distribution = 3.5.

Variance (N) of the sampling distribution: $\frac{52.5}{36} \approx 1.4583$. Standard deviation (N) of the sampling distribution: $\sqrt{\frac{52.5}{36}} \approx 1.208$.

Sample of size n = 3. Values obtained: x_1 , x_2 and x_3 .

Sample mean: $\overline{x} = \frac{x_1 + x_2 + x_3}{3}$.

Sampling distribution of the mean has:

• Mean = 3.5.

• Standard deviation: even lower.

Excel experiment.

Remember from last week:



Reliability and validity

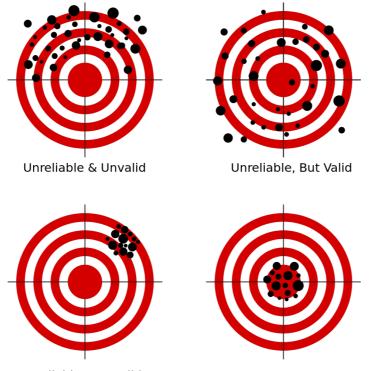
• **Reliability** of the procedure:

Do we get different results if we repeat the experiment?

• Validity of the procedure:

Does the outcome of the experiment target what we would like to know?

Reliability and validity



Reliable, Not Valid

Both Reliable & Valid

http://en.wikipedia.org/wiki/File:Reliability_and_validity.svg

Reliability and validity

• **Reliability** of the procedure:

Procedure is *reliable* if sampling distribution has small spread — given our procedure.

• **Validity** of the procedure:

Unbiased statistic: if mean of sampling distribution is targeted parameter — given our procedure.

Is repeated throwing of dice valid and reliable?

GOOD NEWS!

Sampling distribution

• To reduce bias, achieve validity:

use random sampling!

- To reduce variability, achieve reliability :
 use larger sample!
 Central Limit Theorem!
- Population size N (if much larger than sample size n) does not matter.

Central Limit Theorem

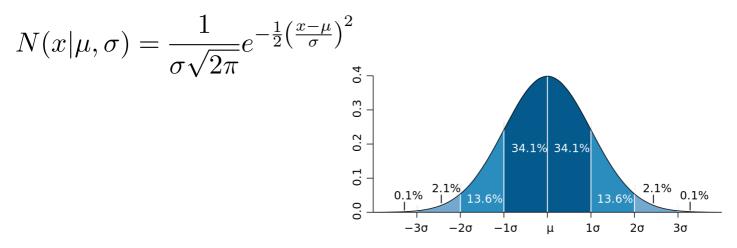
• Given population with any distribution.

Population mean is μ . Population standard deviation is σ .

- Draw a simple random sample (SRS) of size n.
 Calculate sample mean x̄.
- Central Limit Theorem:

sampling distribution of \bar{x} is (approx.) Normal: $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

Normal (Gaussian) distribution



http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg

- e = 2.7182... Mean: μ . Standard deviation: σ .
- Area under curve is 1.

Central Limit Theorem

- Even if we do not know the distribution of some variable in the entire population,
- we know how the empirical mean \bar{x} of any large random sample behaves:
- Sampling distribution of the mean is distributed around the mean μ of the population, and
- follows a Normal distribution of mean μ and st. dev. $\frac{\sigma}{\sqrt{n}}$.

The larger the sample size n, the narrower the distribution.

Central Limit Theorem

• **Central Limit Theorem** (version 1):

sampling distribution of \bar{x} is Normal: $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

- This theorem is only approximately true if original population is not Normal, but *n* is large. (Not true if *n* is small.)
- **Central Limit Theorem** (version 2):

The sum (and, hence, the mean) of *independent* random variables X_1 , X_2 ,..., X_n approaches a Normal distribution, as n grows large.

- Therefore: many statistical procedures require:
 - Independence of the cases in the sample.
 - Normality of the population, or
 - close to Normal distribution and larger sample size, or
 - very large sample size (if Normality does not hold).

Additionally:

"Normality of the population" can be replaced by "Normality of the sample".

Testing Normality of the sample: Normal quantile plots!

Next week

Finally getting to

inferences!

To prepare for next week:

Think about paper structure and data types:

• Intro: General problem

 \rightarrow anecdotal evidence and available data.

- Precise research question: Hypothesis to be tested/rejected (H₀ and H_a).
- How to proceed?
 Sample survey (observation) or experiment (intervention)?
- Pilot vs. "the real stuff".

To prepare for next week:

Define research question, in terms of what is your:

- Motivation? General problem? Operationalized research question?
- Population?
 Parameter(s) of the population that interests you?
- Units?

Sample and sampling method?

• Explanatory variables, response/dependent variables? Levels of the variables?

Send 1-page summary (ppt or pdf). Prepare for 1-minute presentations.

Subsequently:

- What to measure on the sample?
- Statistic to be calculated?
- Best visualization?
- How to draw conclusions in order to answer research question?
- How to draw conclusions in order to contribute to general problem?

See you next week!

