Methodological skills rMA linguistics, week 14

> Tamás Biró ACLC University of Amsterdam t.s.biro@uva.nl

This week

- ANOVA = Analysis of Variance
- Today: one-way ANOVA (M&M 12)
- Advanced stat course: two-way ANOVA (M&M 13)

Inference on means

Sample mean $\bar{x} \rightarrow$ population mean μ ?

- One-sample *t*-test: is $\mu = \mu_0$?
- Two-sample *t*-test: is $\mu_1 = \mu_2$?
- More populations, more samples: analysis of variance: is $\mu_1 = \mu_2 = ... = \mu_I$? (ANOVA, "generalized t-test").

Comparing more populations

- Broca's vs. Vernicke's aphasia vs. controls.
- Verbs vs. nouns vs. adjectives vs. function words.
- French vs. English vs. German vs. Dutch.

• 2×3-design:	male/N	male/V	male/A
	female/N	female/V	female/A

Two ways of looking at ANOVA

1. Compare more populations:

to they have the same mean?

 Nominal explanatory variable(s) explaining a quantitative dependent variable:

How much of the variance in the dependent variable can be explained by the explanatory variable(s),

and how much of this variance is within-group noise?

One-way ANOVA

- 1. Compare populations 1...*I*: do they have the same mean?
- 2. One explanatory variable, with *I* levels: does it explain between-group differences?

- Populations can be classified in one way.
- Mean of responses in one-factor experiments.

Two-way ANOVA

- 1. Compare populations $1...I \times 1...J$: do they have the same mean?
- Two explanatory variables, with I and J levels: do they explain between-group differences? Which one? Both? Interaction?

- Populations can be classified in two ways.
- Mean of responses in two-factor experiments.

Basics of ANOVA

- Populations 1, 2, ...I.
- Single quantitative variable X on units/cases.
- Interested in pop means $\mu_1, \mu_2, ... \mu_I$ of var X.
- One sample for each population:
 - n_i : size of sample $i (1 \le i \le I)$.
 - x_{ij} : case j within sample $i \ (1 \le j \le n_i)$.

H_0 and H_a in ANOVA

- Null hypothesis: H_0 : $\mu_1 = \mu_2 = ... = \mu_I$.
- Alternative hypothesis: not all of the μ_i are equal.
 That is, there exist some i and some j such that μ_i ≠ μ_j.

Assumptions of ANOVA

- Fairly Normal distribution per subgroups, no outliers (use Normal quantile plot).
- Population standard deviations are equal:

Instead of performing formal tests: if largest (sample) standard deviation $< 2 \times$ smallest (sample) standard deviation, then you can safely use ANOVA.

• Independent observations.

(Repeated measure ANOVA for test-retest situations!)

The ANOVA model

- Decompose: DATA (total) = = FIT (between group) + RESIDUAL (within group).
- F-distribution: reject H_0 if variation among groups is large relative to variation within group.
- (F-test for equality of spread/variance M&M 7.3: different from ANOVA, but also employs F-distribution. In general, F-tests are used for the ratio of two Normal distributions.)

Software output

	Sum of		Mean		
	squares	df	square	F	Sig.
Between groups	7.73	3	2.58	11.22	.001
Within groups	3.21	14	.23		
Total	10.94	17			

Reporting ANOVA results

... significant/not significant at $\alpha = 0.05$ level (F(df1, df2) = ..., p = ...).

- *df1*: degree of freedom "between groups" (fit, numerator).
- *df2*: degree of freedom "within groups" (residual, denominator).

If ANOVA null hypothesis rejected...

- At least one of the means is different from others. Which one?
- Prior (before data collection) vs. posthoc (after exploratory data analysis).
- (Prior) contrast: one-sample *t*-test with the null hypothesis that $\psi = \sum_{i=1}^{I} a_i \mu_i = 0$ for some a_i 's depending on *a priori* hypothesis ($\sum a_i = 0$).

If ANOVA null hypothesis rejected...

- Multiple comparison: pairwise comparison of samples *i* to *j*.
 - Large I: many comparisons performed.
 - Therefore, reduce α level.
 - E.g., Bonferoni: guarantees that the probability of any false rejection no greater than original $\alpha = 5\%$.

ANOVA for the exam

When to use it:

- Recognize situations in which ANOVA needed.
- What is being tested (null hypothesis, alternative hypothesis).
- Criteria for its use.
- Interpret software output.

Mathematical details (ANOVA model) only for interested.

Next week:

• Final exam:

Tuesday, May 29, starting at 11.00 in BH 015.

See you next week!

