Statistics for EMCL week 7

Tamás Biró Humanities Computing University of Groningen t.s.biro@rug.nl

This week:

- Power of tests, types of errors.
- Non-parametric tests (M&M 15).
- Summary of tests.

General model of significance tests

- Population: null hypothesis on parameter.
 - Parameter in one population = value?
 - Parameter in two (or more) populations equal?
- Sample \rightarrow statistic.
- Our level of confidence in a statistical procedure: "What would happen if we used the inference method many times?"

General model of significance tests

- Sampling distribution of statistic (may depend on shape of distribution: criteria on use of tests).
- *p*-value: the probability of drawing a sample whose statistic is *as extreme as, or more extreme than* the statistic calculated from our sample.
- If p-value lower than significance level α , reject null hypothesis ("it is unlikely that we have had such a bad luck").

Tests, statistics, distributions

Test	Statistic	Sampling distribution
one-sample z	z	Normal (Gaussian)
one-sample t	t	t(df = n - 1)
two-sample t	t	$\approx t(\mathrm{df} = \min\left(n_1, n_2\right) - 1)$
χ^2	χ^2	$\chi^2(df = (c-1)(r-1))$
ANOVA	$\frac{MSG}{MSE}$	F(DFG,DFE)
equality		F
of variance		

and many-many more...

Power of test

• The **power** of the test to detect the alternative: probability that a fixed level α significance test will reject H_0 when a particular alternative value of the parameter is true.

Types of error

- Type I error: reject H_0 while H_0 is true.
- Type II error: fail to reject H_0 while H_0 is false.
- *p*-value: probability of Type I error.
- Power: probability of no Type II error.

Non-parametric tests When classical statistical tests fail:

- Far from Normal distribution & few data:
 - Remove outliers?
 - Non-linear transformation?
 - Tests based on other frequent distributions?
- Non-numeric data.

Bootstrap methods/permutation tests: M&M 16.

Ordinal scale

Ordered (ranked), but differences not meaningful:

- rank listing of job candidates;
- alphabetical order; sonority scale;
- months; years;
- some test scores, marks of satisfaction/agreement.

Likert scales

On a scale of 1-7, this course was very useful (1) _____ completely useless (7).

- Use at least 5 points.
- Allow a "centre" (use 1 through odd numbers).
- Be consistent: "positive" answers always same side. School grade effect.
- Compare mean using t-test or ANOVA.

Wilcoxon Rank Sum Test

• Data: Group A: 2, 4, 7, 9; Group B: 3, 7, 8, 10, 11

• Rank transformation:

Data	2	3	4	7	7	8	9	10	11
Sample	A	В	A	A	В	В	A	В	В
Rank	1	2	3	4.5	4.5	6	7	8	9

- Wilcoxon rank sum W: sum of ranks for sample A.
- A new statistic again, with its sampling distribution. *p*-values for *W*: from table, software or Normal approximation.

Wilcoxon Rank Sum Test

- Comparing two distributions:
 - Null hypothesis:
 - two populations have same distribution. Alternative hypothesis: for all a,
 - $P(X_1 > a) \ge P(X_2 > a)$; and > for some a.
- Comparing medians: supposing that two distributions have same shape.

Non-parametric tests

Normal tests	Non-parametric fallbacks	
One-sample t	Wilcoxon signed rank test (15.2)	
	Sign test (M&M 7.1)	
Two-sample t	Wilcoxon rank sum W (15.1)	
	Mann-Whitney U	
ANOVA	Kruskal-Wallis test (15.3)	

Based on sum of ranks, except sign test.

Sign test

When all else fails...

- Divide data into classes +, and 0.
- Compare proportion of positive vs. negative.
- H_0 : no weighting toward + or -.
- H_a : bias towards one of the signs.
- Refer to binomial distributions (M&M 5.1).

General remarks

Research article/thesis

- Explain background theory. Earlier studies.
 Explain novelty of your approach, contrast, but fair to others.
- Assumptions. Predictions of theory.
- Describe experiment: sample size, drop outs, control group (group assignment randomly).

- Statistics: population vs. sample, choice of test (requirements met?). Note significance level.
- Data available on ftp server. Visualization, tables.
- Interpret results. Discuss "failed hypotheses". Alternative explanations, conclusion and future work.

Summary

- Real world is less orderly than statistics textbooks imply (M&M p. 220).
- Garbage in, garbage out: statistics can't help if experiment poorly designed, data poorly collected, argumentation flawed.
- Plan statistical procedure *before* data collection: necessary sample size? avoid posthoc

manipulations.

- Visualize data, look at them carefully, before any statistical procedure.
- Before running statistical test, check if criteria of application apply.
- Effect size vs. sample size: large effect significant at small samples; small effects significant at large samples.

Decision tree for tests

- Distribution of non-numeric variables? χ^2 .
- Correlation between two variables: correlation r.
- Compare mean of single numeric variable:
 - Population σ known: z-test.
 - Sample vs. value: one-sample *t*-test.
 - Two values per subject: paired *t*-test.
 - Two groups: two-sample *t*-test.
 - More groups: ANOVA.

For each case: non-parametric fallbacks.

Next week:

- Q&A on Wednesday Prepare questions!
- Website: JN's slides, Q&A, assignment feedback, paper-and-pen assignments...
- Me: prepare sample test, list of "what to learn", correct assignments.
- Exam: November 27.

