Statistics for EMCL week 5

Tamás Biró Humanities Computing University of Groningen t.s.biro@rug.nl

This week:

- Two (or more) variables.
- Scatterplots, correlation, regression (M&M 2).
- Causation and lurking variable(s).
- Two-way tables and chi-square test (M&M 9.1).

More variables Cases \times Variables = Values

- Case = unit = subject.
- For each case: measure/observe value of variables X_1 , X_2 , X_3 , etc.
- Type of var: categorical/quantitative.
- x_{ij} : value of variable *i* for case *j*.

More variables

	sex	origin	father	mother	
			born	born	
case 1	f	us	1948	1948	
case 2	m	de	1954	1953	
case n	f	ch	1949	1955	

More variables

- Variable 1 *vs*. variable 2.
- Explanatory variable vs. response variable: causation?
- Values of categorical variable \rightarrow separate populations (depends on experimental design).

More variables

- Association between variables: knowing the value of variable 1 for case *i* helps predict probable value of variable 2 for same case (and vice versa).
- Independence: distribution of variable 2 is same for all values of variable 1.

Two quantitative variables Scatterplot:

- X-axis: variable 1 (explanatory variable)
- Y-axis: variable 2 (response variable)
- One dot/cross/letter for each case (adding third, categorical variable).
- Pattern, deviations. Distinct clusters.

Linear relationship

- **Positive association**: *increase* in value of variable X typically together with *increase* in value of variable Y.
- Negative association: *increase* in value of var. X typically together with *decrease* in value of var. Y (and vice versa).

Correlation: measures direction and strength of linear relationship between two quantitative variables X and Y:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

•
$$-1 \le r \le 1; \ 0 \le r^2 \le 1$$

• Positive association: r > 0, negative association: r, 0, no linear association r = 0.

• $r^2 = 1$: scatterplot exactly straight line.

- **Regression line**: straight line fitting best data points: $y = b_0 + b_1 \cdot x$.
- b_1 : slope, b_0 : intercept.
- Prediction: given x_i , we predict $\hat{y} = b_0 + b_1 \cdot x_i$. Extrapolation, interpolation.
- $y_i = \text{model} (\text{prediction from } x_i) + \text{residual}.$
- Least-squares regression: minimize sum of squares of residuals. Use software.

Causation and lurking variables

Association \neq causation

- Strong association: r^2 close to 1.
- Same r if we reverse X and Y: no information on which variable is explanatory, and which one is response.
- Often: even no (direct) causation!
- Lurking variable.

Association \neq causation

- Time series: for each year, your age and my gray hair.
- Common cause: for each child, vocabulary size and sentence complexity.
- Confounded variables: their effect cannot be distinguished.
- Smoking and lung cancer: how to establish causation?

Categorical variables

Models if variable is categorical Var Y is categorical, k different values.

- One population, two variables (X and Y) measured on it. Test whether variables are correlated or independent.
- k populations, and measure variable X on each of them. Test if X has same distribution in each population.

Categorical vs. quantitative

X categorical, Y quantitative: Does knowing X influence value you expect for Y?

- Each value of X: separate population.
- Expected value of Y: population mean.
- Comparing two means: two-sample t-test (M&M 7.2).
 Comparing more means: ANOVA (M&M 12.2).

Categorical vs. categorical

In assignment 1: in different languages, different distribution of 1st, 2nd and 3rd person pronouns. Can it be due to random variation, or is there a systematic difference?

• Null hypothesis: random variation.

Number of pronouns found per language:

	Lang 1	Lang 2	Lang 3	Lang 4
1st p.	25	30	22	23
2nd p.	20	10	16	18
3rd p.	5	3	6	4

Two-way tables

- Row variable, column variable, cell.
- Joint distribution: frequency of having X = x and Y = y.
- Marginal distribution: frequency of X = x (whatever Y). frequency of Y = y (whatever X).

- Conditional distribution: for a fixed Y = y, frequency of X = x. for a fixed X = x, frequency of Y = y.
- Three-way tables.
- Simpson's paradox and perils of aggregation: see example in M&M 2.5.

Number of pronouns found per language:

	Lang 1	Lang 2	Lang 3	Lang 4
1st p.	25	30	22	23
2nd p.	20	10	16	18
3rd p.	5	3	6	4

Marginal totals and grand total

	Lang 1	Lang 2	Lang 3	Lang 4	Total
1st p.	25	30	22	23	100
2nd p.	20	10	16	18	64
3rd p.	5	3	6	4	18
Total	50	43	44	45	182

- Grand total: sample size n.
- Joint distribution: divide each cell by n.
- Marginal distributions: divide marg. totals by n:
 - Freq of 1st form among pronouns of any language.
 - Freq of Language 1 among pronouns of any language.
- Conditional distr: divide cell by row/column total:
 - Freq of 1st form among pronouns of language 2.
 - Freq of Language 1 among 3rd person pronouns.

Two-way tables

Is there association between X and Y? If no association (X and Y independent):

• $P(X = x \text{ and } Y = y) = P(X = x) \cdot P(Y = y)$, Joint distribution = product of marginal distributions.

• expected cell count = $\frac{\text{row total} \times \text{column total}}{\text{grand total}}$

Chi-square test

- Null hypothesis: no association.
- **Chi-square statistic**: measures divergence of observed cell counts from expected cell counts:

$$X^{2} = \sum_{\text{cells}} \frac{(\text{observed count} - \text{expected count})^{2}}{\text{expected count}}$$

• Follows chi-square distribution with degree of freedom df = (r - 1)(c - 1).

Marginal totals and grand total

	Lang 1	Lang 2	Lang 3	Lang 4	Total
1st p.	25	30	22	23	100
2nd p.	20	10	16	18	64
3rd p.	5	3	6	4	18
Total	50	43	44	45	182

Expected cell counts:

	Lang 1	Lang 2	Lang 3	Lang 4	Total
1st p.	27.5	23.6	24.2	24.7	100
2nd p.	17.6	15.1	15.4	15.8	64
3rd p.	4.9	4.3	4.4	4.5	18
Total	50	43	44	45	182

$$\chi^2 = \frac{25 - 27.5^2}{27.5} + \frac{30 - 23.6^2}{23.6} + \dots + \frac{6 - 4.4^2}{4.4} + \frac{4 - 4.5^2}{4.5} = 6.65$$

Degrees of freedom: $df = (c-1)(r-1) = (4-1) \cdot (3-1) = 6$

Critical value: $\alpha = 0.05 \rightarrow (\chi^2)^* = 12.59$

Data do not provide sufficient support to reject null hypothesis at $\alpha = 0.05$ level ($\chi^2 = 6.66$, df = 6, P = ...).

Next week:

ANOVA

NB: Assignment 3 notes on web.

